Reindexing directed families in posets
Content created by Fredrik Bakke.
Created on 2024-11-20.
Last modified on 2024-11-20.
module domain-theory.reindexing-directed-families-posets where
Imports
open import domain-theory.directed-families-posets open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.existential-quantification open import foundation.function-types open import foundation.identity-types open import foundation.inhabited-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.surjective-maps open import foundation.universal-quantification open import foundation.universe-levels open import order-theory.order-preserving-maps-posets open import order-theory.posets
Idea
Given a directed family x : J → P
in a poset P
and a
surjection f : I ↠ J
, then we can
reindex¶
the directed family x
by f
to obtain another directed family
x ∘ f : I → P
. The requirement that f
is surjective guarantees that
upper bounds in x
also
exist in x ∘ f
.
Definitions
Reindexing directed families in a poset
module _ {l1 l2 l3 l4 : Level} (P : Poset l1 l2) (x : directed-family-Poset l3 P) {I : UU l4} (f : I ↠ type-directed-family-Poset P x) where type-reindex-directed-family-Poset : UU l4 type-reindex-directed-family-Poset = I is-inhabited-type-reindex-directed-family-Poset : is-inhabited type-reindex-directed-family-Poset is-inhabited-type-reindex-directed-family-Poset = is-inhabited-surjection f (is-inhabited-type-directed-family-Poset P x) inhabited-type-reindex-directed-family-Poset : Inhabited-Type l4 inhabited-type-reindex-directed-family-Poset = type-reindex-directed-family-Poset , is-inhabited-type-reindex-directed-family-Poset family-reindex-directed-family-Poset : type-reindex-directed-family-Poset → type-Poset P family-reindex-directed-family-Poset = family-directed-family-Poset P x ∘ map-surjection f abstract is-directed-family-reindex-directed-family-Poset : is-directed-family-Poset P inhabited-type-reindex-directed-family-Poset family-reindex-directed-family-Poset is-directed-family-reindex-directed-family-Poset u v = elim-exists ( exists-structure-Prop type-reindex-directed-family-Poset _) ( λ z y → rec-trunc-Prop ( exists-structure-Prop type-reindex-directed-family-Poset _) ( λ p → intro-exists ( pr1 p) ( concatenate-leq-eq-Poset P ( pr1 y) ( ap (family-directed-family-Poset P x) (inv (pr2 p))) , concatenate-leq-eq-Poset P ( pr2 y) ( ap (family-directed-family-Poset P x) (inv (pr2 p))))) ( is-surjective-map-surjection f z)) ( is-directed-family-directed-family-Poset P x ( map-surjection f u) ( map-surjection f v)) reindex-directed-family-Poset : directed-family-Poset l4 P reindex-directed-family-Poset = inhabited-type-reindex-directed-family-Poset , family-reindex-directed-family-Poset , is-directed-family-reindex-directed-family-Poset
Reindexing directed families in a poset by an equivalence
module _ {l1 l2 l3 l4 : Level} (P : Poset l1 l2) (x : directed-family-Poset l3 P) {I : UU l4} where reindex-equiv-directed-family-Poset : I ≃ type-directed-family-Poset P x → directed-family-Poset l4 P reindex-equiv-directed-family-Poset f = reindex-directed-family-Poset P x (surjection-equiv f) reindex-inv-equiv-directed-family-Poset : type-directed-family-Poset P x ≃ I → directed-family-Poset l4 P reindex-inv-equiv-directed-family-Poset f = reindex-directed-family-Poset P x (surjection-inv-equiv f)
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).