The universal property of the family of fibers of maps
Content created by Egbert Rijke, Fredrik Bakke, Raymond Baker and Vojtěch Štěpančík.
Created on 2023-12-05.
Last modified on 2024-04-11.
module foundation.universal-property-family-of-fibers-of-maps where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.diagonal-maps-of-types open import foundation.families-of-equivalences open import foundation.function-extensionality open import foundation.subtype-identity-principle open import foundation.universe-levels open import foundation-core.constant-maps open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.precomposition-dependent-functions open import foundation-core.retractions open import foundation-core.sections open import orthogonal-factorization-systems.extensions-double-lifts-families-of-elements open import orthogonal-factorization-systems.lifts-families-of-elements
Idea
Any map f : A → B
induces a type family fiber f : B → 𝒰
of
fibers of f
. By
precomposing with f
, we obtain
the type family (fiber f) ∘ f : A → 𝒰
, which always has a section given by
λ a → (a , refl) : (a : A) → fiber f (f a).
We can uniquely characterize the family of fibers fiber f : B → 𝒰
as the
initial type family equipped with such a section. Explicitly, the
universal property of the family of fibers¶
fiber f : B → 𝒰
of a map f
is that the precomposition operation
((b : B) → fiber f b → X b) → ((a : A) → X (f a))
is an equivalence for any type family
X : B → 𝒰
. Note that for any type family X
over B
and any map f : A → B
,
the type of
lifts of f
to X
is precisely the type of sections
(a : A) → X (f a).
The family of fibers of f
is therefore the initial type family over B
equipped with a lift of f
.
This universal property is especially useful when A
or B
enjoy mapping out
universal properties. This lets us characterize the sections (a : A) → X (f a)
in terms of the mapping out properties of A
and the descent data of B
.
Note: We disambiguate between the universal property of the family of
fibers of a map and the universal property of the fiber of a map at a point
in the codomain. The universal property of the family of fibers of a map is as
described above, while the universal property of the fiber fiber f b
of a map
f
at b
is a special case of the universal property of pullbacks.
Definitions
The dependent universal property of the family of fibers of a map
Consider a map f : A → B
and a type family F : B → 𝒰
equipped with a lift
δ : (a : A) → F (f a)
of f
to F
. Then there is an evaluation map
((b : B) (z : F b) → X b z) → ((a : A) → X (f a) (δ a))
for any binary type family X : (b : B) → F b → 𝒰
. This evaluation map takes a
binary family of elements of X
to a
double lift
of f
and δ
. The
dependent universal property of the family of fibers of a map¶
f
asserts that this evaluation map is an equivalence.
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} where dependent-universal-property-family-of-fibers : {f : A → B} (F : B → UU l3) (δ : lift-family-of-elements F f) → UUω dependent-universal-property-family-of-fibers F δ = {l : Level} (X : (b : B) → F b → UU l) → is-equiv (ev-double-lift-family-of-elements {B = F} {X} δ)
The universal property of the family of fibers of a map
Consider a map f : A → B
and a type family F : B → 𝒰
equipped with a lift
δ : (a : A) → F (f a)
of f
to F
. Then there is an evaluation map
((b : B) → F b → X b) → ((a : A) → X (f a))
for any binary type family X : B → 𝒰
. This evaluation map takes a binary
family of elements of X
to a double lift of f
and δ
. The universal
property of the family of fibers of f
asserts that this evaluation map is an
equivalence.
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} where universal-property-family-of-fibers : {f : A → B} (F : B → UU l3) (δ : lift-family-of-elements F f) → UUω universal-property-family-of-fibers F δ = {l : Level} (X : B → UU l) → is-equiv (ev-double-lift-family-of-elements {B = F} {λ b _ → X b} δ)
The lift of any map to its family of fibers
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where lift-family-of-elements-fiber : lift-family-of-elements (fiber f) f pr1 (lift-family-of-elements-fiber a) = a pr2 (lift-family-of-elements-fiber a) = refl
Properties
The family of fibers of a map satisfies the dependent universal property of the family of fibers of a map
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where module _ {l3 : Level} (C : (y : B) (z : fiber f y) → UU l3) where ev-lift-family-of-elements-fiber : ((y : B) (z : fiber f y) → C y z) → ((x : A) → C (f x) (x , refl)) ev-lift-family-of-elements-fiber = ev-double-lift-family-of-elements (lift-family-of-elements-fiber f) extend-lift-family-of-elements-fiber : ((x : A) → C (f x) (x , refl)) → ((y : B) (z : fiber f y) → C y z) extend-lift-family-of-elements-fiber h .(f x) (x , refl) = h x is-section-extend-lift-family-of-elements-fiber : is-section ( ev-lift-family-of-elements-fiber) ( extend-lift-family-of-elements-fiber) is-section-extend-lift-family-of-elements-fiber h = refl is-retraction-extend-lift-family-of-elements-fiber' : (h : (y : B) (z : fiber f y) → C y z) (y : B) → extend-lift-family-of-elements-fiber ( ev-lift-family-of-elements-fiber h) ( y) ~ h y is-retraction-extend-lift-family-of-elements-fiber' h .(f z) (z , refl) = refl is-retraction-extend-lift-family-of-elements-fiber : is-retraction ( ev-lift-family-of-elements-fiber) ( extend-lift-family-of-elements-fiber) is-retraction-extend-lift-family-of-elements-fiber h = eq-htpy (eq-htpy ∘ is-retraction-extend-lift-family-of-elements-fiber' h) is-equiv-extend-lift-family-of-elements-fiber : is-equiv extend-lift-family-of-elements-fiber is-equiv-extend-lift-family-of-elements-fiber = is-equiv-is-invertible ( ev-lift-family-of-elements-fiber) ( is-retraction-extend-lift-family-of-elements-fiber) ( is-section-extend-lift-family-of-elements-fiber) inv-equiv-dependent-universal-property-family-of-fibers : ((x : A) → C (f x) (x , refl)) ≃ ((y : B) (z : fiber f y) → C y z) pr1 inv-equiv-dependent-universal-property-family-of-fibers = extend-lift-family-of-elements-fiber pr2 inv-equiv-dependent-universal-property-family-of-fibers = is-equiv-extend-lift-family-of-elements-fiber dependent-universal-property-family-of-fibers-fiber : dependent-universal-property-family-of-fibers ( fiber f) ( lift-family-of-elements-fiber f) dependent-universal-property-family-of-fibers-fiber C = is-equiv-is-invertible ( extend-lift-family-of-elements-fiber C) ( is-section-extend-lift-family-of-elements-fiber C) ( is-retraction-extend-lift-family-of-elements-fiber C) equiv-dependent-universal-property-family-of-fibers : {l3 : Level} (C : (y : B) (z : fiber f y) → UU l3) → ((y : B) (z : fiber f y) → C y z) ≃ ((x : A) → C (f x) (x , refl)) pr1 (equiv-dependent-universal-property-family-of-fibers C) = ev-lift-family-of-elements-fiber C pr2 (equiv-dependent-universal-property-family-of-fibers C) = dependent-universal-property-family-of-fibers-fiber C
The family of fibers of a map satisfies the universal property of the family of fibers of a map
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where universal-property-family-of-fibers-fiber : universal-property-family-of-fibers ( fiber f) ( lift-family-of-elements-fiber f) universal-property-family-of-fibers-fiber C = dependent-universal-property-family-of-fibers-fiber f (λ y _ → C y) equiv-universal-property-family-of-fibers : {l3 : Level} (C : B → UU l3) → ((y : B) → fiber f y → C y) ≃ lift-family-of-elements C f equiv-universal-property-family-of-fibers C = equiv-dependent-universal-property-family-of-fibers f (λ y _ → C y)
The inverse equivalence of the universal property of the family of fibers of a map
The inverse of the equivalence equiv-universal-property-family-of-fibers
has a
reasonably nice definition, so we also record it here.
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) where inv-equiv-universal-property-family-of-fibers : (lift-family-of-elements C f) ≃ ((y : B) → fiber f y → C y) inv-equiv-universal-property-family-of-fibers = inv-equiv-dependent-universal-property-family-of-fibers f (λ y _ → C y)
If a type family equipped with a lift of a map satisfies the universal property of the family of fibers, then it satisfies a unique extension property
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {f : A → B} {F : B → UU l3} {δ : (a : A) → F (f a)} (u : universal-property-family-of-fibers F δ) (G : B → UU l4) (γ : (a : A) → G (f a)) where abstract uniqueness-extension-universal-property-family-of-fibers : is-contr ( extension-double-lift-family-of-elements (λ y (_ : F y) → G y) δ γ) uniqueness-extension-universal-property-family-of-fibers = is-contr-equiv ( fiber (ev-double-lift-family-of-elements δ) γ) ( equiv-tot (λ h → equiv-eq-htpy)) ( is-contr-map-is-equiv (u G) γ) abstract extension-universal-property-family-of-fibers : extension-double-lift-family-of-elements (λ y (_ : F y) → G y) δ γ extension-universal-property-family-of-fibers = center uniqueness-extension-universal-property-family-of-fibers fiberwise-map-universal-property-family-of-fibers : (b : B) → F b → G b fiberwise-map-universal-property-family-of-fibers = family-of-elements-extension-double-lift-family-of-elements extension-universal-property-family-of-fibers is-extension-fiberwise-map-universal-property-family-of-fibers : is-extension-double-lift-family-of-elements ( λ y _ → G y) ( δ) ( γ) ( fiberwise-map-universal-property-family-of-fibers) is-extension-fiberwise-map-universal-property-family-of-fibers = is-extension-extension-double-lift-family-of-elements extension-universal-property-family-of-fibers
The family of fibers of a map is uniquely unique
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} (f : A → B) (F : B → UU l3) (δ : (a : A) → F (f a)) (u : universal-property-family-of-fibers F δ) (G : B → UU l4) (γ : (a : A) → G (f a)) (v : universal-property-family-of-fibers G γ) where is-retraction-extension-universal-property-family-of-fibers : comp-extension-double-lift-family-of-elements ( extension-universal-property-family-of-fibers v F δ) ( extension-universal-property-family-of-fibers u G γ) = id-extension-double-lift-family-of-elements δ is-retraction-extension-universal-property-family-of-fibers = eq-is-contr ( uniqueness-extension-universal-property-family-of-fibers u F δ) is-section-extension-universal-property-family-of-fibers : comp-extension-double-lift-family-of-elements ( extension-universal-property-family-of-fibers u G γ) ( extension-universal-property-family-of-fibers v F δ) = id-extension-double-lift-family-of-elements γ is-section-extension-universal-property-family-of-fibers = eq-is-contr ( uniqueness-extension-universal-property-family-of-fibers v G γ) is-retraction-fiberwise-map-universal-property-family-of-fibers : (b : B) → is-retraction ( fiberwise-map-universal-property-family-of-fibers u G γ b) ( fiberwise-map-universal-property-family-of-fibers v F δ b) is-retraction-fiberwise-map-universal-property-family-of-fibers b = htpy-eq ( htpy-eq ( ap ( pr1) ( is-retraction-extension-universal-property-family-of-fibers)) ( b)) is-section-fiberwise-map-universal-property-family-of-fibers : (b : B) → is-section ( fiberwise-map-universal-property-family-of-fibers u G γ b) ( fiberwise-map-universal-property-family-of-fibers v F δ b) is-section-fiberwise-map-universal-property-family-of-fibers b = htpy-eq ( htpy-eq ( ap ( pr1) ( is-section-extension-universal-property-family-of-fibers)) ( b)) is-fiberwise-equiv-fiberwise-map-universal-property-family-of-fibers : is-fiberwise-equiv (fiberwise-map-universal-property-family-of-fibers u G γ) is-fiberwise-equiv-fiberwise-map-universal-property-family-of-fibers b = is-equiv-is-invertible ( family-of-elements-extension-double-lift-family-of-elements ( extension-universal-property-family-of-fibers v F δ) ( b)) ( is-section-fiberwise-map-universal-property-family-of-fibers b) ( is-retraction-fiberwise-map-universal-property-family-of-fibers b) uniquely-unique-family-of-fibers : is-contr ( Σ ( fiberwise-equiv F G) ( λ h → ev-double-lift-family-of-elements δ (map-fiberwise-equiv h) ~ γ)) uniquely-unique-family-of-fibers = is-torsorial-Eq-subtype ( uniqueness-extension-universal-property-family-of-fibers u G γ) ( is-property-is-fiberwise-equiv) ( fiberwise-map-universal-property-family-of-fibers u G γ) ( is-extension-fiberwise-map-universal-property-family-of-fibers u G γ) ( is-fiberwise-equiv-fiberwise-map-universal-property-family-of-fibers) extension-by-fiberwise-equiv-universal-property-family-of-fibers : Σ ( fiberwise-equiv F G) ( λ h → ev-double-lift-family-of-elements δ (map-fiberwise-equiv h) ~ γ) extension-by-fiberwise-equiv-universal-property-family-of-fibers = center uniquely-unique-family-of-fibers fiberwise-equiv-universal-property-of-fibers : fiberwise-equiv F G fiberwise-equiv-universal-property-of-fibers = pr1 extension-by-fiberwise-equiv-universal-property-family-of-fibers is-extension-fiberwise-equiv-universal-property-of-fibers : is-extension-double-lift-family-of-elements ( λ y _ → G y) ( δ) ( γ) ( map-fiberwise-equiv ( fiberwise-equiv-universal-property-of-fibers)) is-extension-fiberwise-equiv-universal-property-of-fibers = pr2 extension-by-fiberwise-equiv-universal-property-family-of-fibers
A type family C
over B
satisfies the universal property of the family of fibers of a map f : A → B
if and only if the constant map C b → (fiber f b → C b)
is an equivalence for every b : B
In other words, the dependent type C
is
f
-local if its fiber over
b
is fiber f b
-null for
every b : B
.
This condition simplifies, for example, the proof that connected maps satisfy a dependent universal property.
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {f : A → B} {C : B → UU l3} where is-equiv-precomp-Π-fiber-condition : ((b : B) → is-equiv (diagonal-exponential (C b) (fiber f b))) → is-equiv (precomp-Π f C) is-equiv-precomp-Π-fiber-condition H = is-equiv-comp ( ev-lift-family-of-elements-fiber f (λ b _ → C b)) ( map-Π (λ b → diagonal-exponential (C b) (fiber f b))) ( is-equiv-map-Π-is-fiberwise-equiv H) ( universal-property-family-of-fibers-fiber f C)
Recent changes
- 2024-04-11. Fredrik Bakke. Refactor diagonals (#1096).
- 2024-03-20. Fredrik Bakke. chore: Janitorial work in foundation (#1086).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).