W-types
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2023-01-26.
Last modified on 2024-02-06.
module trees.w-types where
Imports
open import foundation.action-on-identifications-functions open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.homotopy-induction open import foundation.identity-types open import foundation.postcomposition-functions open import foundation.propositional-truncations open import foundation.sets open import foundation.torsorial-type-families open import foundation.transport-along-identifications open import foundation.truncated-types open import foundation.truncation-levels open import foundation.type-theoretic-principle-of-choice open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import trees.algebras-polynomial-endofunctors open import trees.coalgebras-polynomial-endofunctors open import trees.morphisms-algebras-polynomial-endofunctors open import trees.polynomial-endofunctors
Idea
Consider a type A
equipped with a type family B
over A
. The type W
generated inductively by a constructor B x → W
for each x : A
is called the
W-type W A B
of B
. The elements of A
can be thought of as symbols for
the constructors of W A B
, and the functions B x → W A B
are the
constructors. The elements of W A B
can be thought of as well-founded trees.
Definition
data 𝕎 {l1 l2 : Level} (A : UU l1) (B : A → UU l2) : UU (l1 ⊔ l2) where tree-𝕎 : (x : A) (α : B x → 𝕎 A B) → 𝕎 A B module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where shape-𝕎 : 𝕎 A B → A shape-𝕎 (tree-𝕎 x α) = x component-𝕎 : (x : 𝕎 A B) → B (shape-𝕎 x) → 𝕎 A B component-𝕎 (tree-𝕎 x α) = α η-𝕎 : (x : 𝕎 A B) → tree-𝕎 (shape-𝕎 x) (component-𝕎 x) = x η-𝕎 (tree-𝕎 x α) = refl
W-types as algebras for a polynomial endofunctor
structure-𝕎-Alg : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → type-polynomial-endofunctor A B (𝕎 A B) → 𝕎 A B structure-𝕎-Alg (pair x α) = tree-𝕎 x α 𝕎-Alg : {l1 l2 : Level} (A : UU l1) (B : A → UU l2) → algebra-polynomial-endofunctor (l1 ⊔ l2) A B 𝕎-Alg A B = pair (𝕎 A B) structure-𝕎-Alg
W-types as coalgebras for a polynomial endofunctor
𝕎-Coalg : {l1 l2 : Level} (A : UU l1) (B : A → UU l2) → coalgebra-polynomial-endofunctor (l1 ⊔ l2) A B pr1 (𝕎-Coalg A B) = 𝕎 A B pr1 (pr2 (𝕎-Coalg A B) x) = shape-𝕎 x pr2 (pr2 (𝕎-Coalg A B) x) = component-𝕎 x
Properties
The elements of the form tree-𝕎 x α
where B x
is an empty type are called the constants of W A B
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where constant-𝕎 : (x : A) → is-empty (B x) → 𝕎 A B constant-𝕎 x h = tree-𝕎 x (ex-falso ∘ h) is-constant-𝕎 : 𝕎 A B → UU l2 is-constant-𝕎 x = is-empty (B (shape-𝕎 x))
If each B x
is inhabited, then the type W A B
is empty
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where is-empty-𝕎 : ((x : A) → type-trunc-Prop (B x)) → is-empty (𝕎 A B) is-empty-𝕎 H (tree-𝕎 x α) = apply-universal-property-trunc-Prop ( H x) ( empty-Prop) ( λ y → is-empty-𝕎 H (α y))
Equality of W-types
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where Eq-𝕎 : 𝕎 A B → 𝕎 A B → UU (l1 ⊔ l2) Eq-𝕎 (tree-𝕎 x α) (tree-𝕎 y β) = Σ (x = y) (λ p → (z : B x) → Eq-𝕎 (α z) (β (tr B p z))) refl-Eq-𝕎 : (w : 𝕎 A B) → Eq-𝕎 w w refl-Eq-𝕎 (tree-𝕎 x α) = pair refl (λ z → refl-Eq-𝕎 (α z)) center-total-Eq-𝕎 : (w : 𝕎 A B) → Σ (𝕎 A B) (Eq-𝕎 w) center-total-Eq-𝕎 w = pair w (refl-Eq-𝕎 w) aux-total-Eq-𝕎 : (x : A) (α : B x → 𝕎 A B) → Σ (B x → 𝕎 A B) (λ β → (y : B x) → Eq-𝕎 (α y) (β y)) → Σ (𝕎 A B) (Eq-𝕎 (tree-𝕎 x α)) aux-total-Eq-𝕎 x α (pair β e) = pair (tree-𝕎 x β) (pair refl e) contraction-total-Eq-𝕎 : (w : 𝕎 A B) (t : Σ (𝕎 A B) (Eq-𝕎 w)) → center-total-Eq-𝕎 w = t contraction-total-Eq-𝕎 ( tree-𝕎 x α) (pair (tree-𝕎 .x β) (pair refl e)) = ap ( ( aux-total-Eq-𝕎 x α) ∘ ( map-distributive-Π-Σ { A = B x} { B = λ y → 𝕎 A B} { C = λ y → Eq-𝕎 (α y)})) { x = λ y → pair (α y) (refl-Eq-𝕎 (α y))} { y = λ y → pair (β y) (e y)} ( eq-htpy (λ y → contraction-total-Eq-𝕎 (α y) (pair (β y) (e y)))) is-torsorial-Eq-𝕎 : (w : 𝕎 A B) → is-torsorial (Eq-𝕎 w) is-torsorial-Eq-𝕎 w = pair (center-total-Eq-𝕎 w) (contraction-total-Eq-𝕎 w) Eq-𝕎-eq : (v w : 𝕎 A B) → v = w → Eq-𝕎 v w Eq-𝕎-eq v .v refl = refl-Eq-𝕎 v is-equiv-Eq-𝕎-eq : (v w : 𝕎 A B) → is-equiv (Eq-𝕎-eq v w) is-equiv-Eq-𝕎-eq v = fundamental-theorem-id ( is-torsorial-Eq-𝕎 v) ( Eq-𝕎-eq v) eq-Eq-𝕎 : (v w : 𝕎 A B) → Eq-𝕎 v w → v = w eq-Eq-𝕎 v w = map-inv-is-equiv (is-equiv-Eq-𝕎-eq v w) equiv-Eq-𝕎-eq : (v w : 𝕎 A B) → (v = w) ≃ Eq-𝕎 v w equiv-Eq-𝕎-eq v w = pair (Eq-𝕎-eq v w) (is-equiv-Eq-𝕎-eq v w) is-trunc-𝕎 : (k : 𝕋) → is-trunc (succ-𝕋 k) A → is-trunc (succ-𝕋 k) (𝕎 A B) is-trunc-𝕎 k is-trunc-A (tree-𝕎 x α) (tree-𝕎 y β) = is-trunc-is-equiv k ( Eq-𝕎 (tree-𝕎 x α) (tree-𝕎 y β)) ( Eq-𝕎-eq (tree-𝕎 x α) (tree-𝕎 y β)) ( is-equiv-Eq-𝕎-eq (tree-𝕎 x α) (tree-𝕎 y β)) ( is-trunc-Σ ( is-trunc-A x y) ( λ p → is-trunc-Π k ( λ z → is-trunc-is-equiv' k ( α z = β (tr B p z)) ( Eq-𝕎-eq (α z) (β (tr B p z))) ( is-equiv-Eq-𝕎-eq (α z) (β (tr B p z))) ( is-trunc-𝕎 k is-trunc-A (α z) (β (tr B p z)))))) is-set-𝕎 : is-set A → is-set (𝕎 A B) is-set-𝕎 = is-trunc-𝕎 neg-one-𝕋
The structure map of the algebra 𝕎 A B
is an equivalence
map-inv-structure-𝕎-Alg : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → 𝕎 A B → type-polynomial-endofunctor A B (𝕎 A B) map-inv-structure-𝕎-Alg (tree-𝕎 x α) = pair x α is-section-map-inv-structure-𝕎-Alg : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → (structure-𝕎-Alg {B = B} ∘ map-inv-structure-𝕎-Alg {B = B}) ~ id is-section-map-inv-structure-𝕎-Alg (tree-𝕎 x α) = refl is-retraction-map-inv-structure-𝕎-Alg : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → (map-inv-structure-𝕎-Alg {B = B} ∘ structure-𝕎-Alg {B = B}) ~ id is-retraction-map-inv-structure-𝕎-Alg (pair x α) = refl is-equiv-structure-𝕎-Alg : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-equiv (structure-𝕎-Alg {B = B}) is-equiv-structure-𝕎-Alg = is-equiv-is-invertible map-inv-structure-𝕎-Alg is-section-map-inv-structure-𝕎-Alg is-retraction-map-inv-structure-𝕎-Alg equiv-structure-𝕎-Alg : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → type-polynomial-endofunctor A B (𝕎 A B) ≃ 𝕎 A B equiv-structure-𝕎-Alg = pair structure-𝕎-Alg is-equiv-structure-𝕎-Alg is-equiv-map-inv-structure-𝕎-Alg : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-equiv (map-inv-structure-𝕎-Alg {B = B}) is-equiv-map-inv-structure-𝕎-Alg = is-equiv-is-invertible structure-𝕎-Alg is-retraction-map-inv-structure-𝕎-Alg is-section-map-inv-structure-𝕎-Alg inv-equiv-structure-𝕎-Alg : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → 𝕎 A B ≃ type-polynomial-endofunctor A B (𝕎 A B) inv-equiv-structure-𝕎-Alg = pair map-inv-structure-𝕎-Alg is-equiv-map-inv-structure-𝕎-Alg
W-types are initial algebras for polynomial endofunctors
map-hom-𝕎-Alg : {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (X : algebra-polynomial-endofunctor l3 A B) → 𝕎 A B → type-algebra-polynomial-endofunctor X map-hom-𝕎-Alg X (tree-𝕎 x α) = structure-algebra-polynomial-endofunctor X ( pair x (λ y → map-hom-𝕎-Alg X (α y))) structure-hom-𝕎-Alg : {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (X : algebra-polynomial-endofunctor l3 A B) → ( (map-hom-𝕎-Alg X) ∘ structure-𝕎-Alg) ~ ( ( structure-algebra-polynomial-endofunctor X) ∘ ( map-polynomial-endofunctor A B (map-hom-𝕎-Alg X))) structure-hom-𝕎-Alg X (pair x α) = refl hom-𝕎-Alg : {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (X : algebra-polynomial-endofunctor l3 A B) → hom-algebra-polynomial-endofunctor (𝕎-Alg A B) X hom-𝕎-Alg X = pair (map-hom-𝕎-Alg X) (structure-hom-𝕎-Alg X) htpy-htpy-hom-𝕎-Alg : {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (X : algebra-polynomial-endofunctor l3 A B) → (f : hom-algebra-polynomial-endofunctor (𝕎-Alg A B) X) → map-hom-𝕎-Alg X ~ map-hom-algebra-polynomial-endofunctor (𝕎-Alg A B) X f htpy-htpy-hom-𝕎-Alg {A = A} {B} X f (tree-𝕎 x α) = ( ap ( λ t → structure-algebra-polynomial-endofunctor X (pair x t)) ( eq-htpy (λ z → htpy-htpy-hom-𝕎-Alg X f (α z)))) ∙ ( inv ( structure-hom-algebra-polynomial-endofunctor (𝕎-Alg A B) X f ( pair x α))) compute-structure-htpy-hom-𝕎-Alg : {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (X : algebra-polynomial-endofunctor l3 A B) (x : A) (α : B x → 𝕎 A B) {f : 𝕎 A B → type-algebra-polynomial-endofunctor X} → (H : map-hom-𝕎-Alg X ~ f) → ( ap ( structure-algebra-polynomial-endofunctor X) ( htpy-polynomial-endofunctor A B H (pair x α))) = ( ap ( λ t → structure-algebra-polynomial-endofunctor X (pair x t)) ( htpy-postcomp (B x) H α)) compute-structure-htpy-hom-𝕎-Alg {A = A} {B} X x α = ind-htpy ( map-hom-𝕎-Alg X) ( λ f H → ( ap ( structure-algebra-polynomial-endofunctor X) ( htpy-polynomial-endofunctor A B H (pair x α))) = ( ap ( λ t → structure-algebra-polynomial-endofunctor X (pair x t)) ( htpy-postcomp (B x) H α))) ( ap ( ap (pr2 X)) ( coh-refl-htpy-polynomial-endofunctor A B ( map-hom-𝕎-Alg X) ( pair x α)) ∙ ( inv ( ap ( ap (λ t → pr2 X (pair x t))) ( eq-htpy-refl-htpy (map-hom-𝕎-Alg X ∘ α))))) structure-htpy-hom-𝕎-Alg : {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (X : algebra-polynomial-endofunctor l3 A B) → (f : hom-algebra-polynomial-endofunctor (𝕎-Alg A B) X) → ( structure-hom-𝕎-Alg X ∙h ( ( structure-algebra-polynomial-endofunctor X) ·l ( htpy-polynomial-endofunctor A B (htpy-htpy-hom-𝕎-Alg X f)))) ~ ( ( (htpy-htpy-hom-𝕎-Alg X f) ·r structure-𝕎-Alg {B = B}) ∙h ( structure-hom-algebra-polynomial-endofunctor (𝕎-Alg A B) X f)) structure-htpy-hom-𝕎-Alg {A = A} {B} X (pair f μ-f) (pair x α) = ( ( ( compute-structure-htpy-hom-𝕎-Alg X x α ( htpy-htpy-hom-𝕎-Alg X (pair f μ-f))) ∙ ( inv right-unit)) ∙ ( ap ( concat ( ap ( λ t → pr2 X (pair x t)) ( eq-htpy (htpy-htpy-hom-𝕎-Alg X (pair f μ-f) ·r α))) ( pr2 X (map-polynomial-endofunctor A B f (pair x α)))) ( inv (left-inv ( μ-f (pair x α)))))) ∙ ( inv ( assoc ( ap ( λ t → pr2 X (pair x t)) ( eq-htpy (htpy-htpy-hom-𝕎-Alg X (pair f μ-f) ·r α))) ( inv (μ-f (pair x α))) ( μ-f (pair x α)))) htpy-hom-𝕎-Alg : {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (X : algebra-polynomial-endofunctor l3 A B) → (f : hom-algebra-polynomial-endofunctor (𝕎-Alg A B) X) → htpy-hom-algebra-polynomial-endofunctor (𝕎-Alg A B) X (hom-𝕎-Alg X) f htpy-hom-𝕎-Alg X f = pair (htpy-htpy-hom-𝕎-Alg X f) (structure-htpy-hom-𝕎-Alg X f) is-initial-𝕎-Alg : {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (X : algebra-polynomial-endofunctor l3 A B) → is-contr (hom-algebra-polynomial-endofunctor (𝕎-Alg A B) X) is-initial-𝕎-Alg {A = A} {B} X = pair ( hom-𝕎-Alg X) ( λ f → eq-htpy-hom-algebra-polynomial-endofunctor (𝕎-Alg A B) X (hom-𝕎-Alg X) f ( htpy-hom-𝕎-Alg X f))
Recent changes
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2024-01-25. Fredrik Bakke. Basic properties of orthogonal maps (#979).
- 2023-10-21. Egbert Rijke and Fredrik Bakke. Implement
is-torsorial
throughout the library (#875). - 2023-10-21. Egbert Rijke. Rename
is-contr-total
tois-torsorial
(#871). - 2023-09-13. Fredrik Bakke and Egbert Rijke. Refactor structured monoids (#761).