The precategory of semirings
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-05-06.
Last modified on 2024-03-11.
module ring-theory.precategory-of-semirings where
Imports
open import category-theory.large-precategories open import category-theory.precategories open import foundation.universe-levels open import ring-theory.homomorphisms-semirings open import ring-theory.semirings
Idea
The {{#concet “precategory of semirings” Agda=Semiring-Large-Precategory}} consists of semirings and homomorphisms of semirings.
Definitions
The large precategory of semirings
Semiring-Large-Precategory : Large-Precategory lsuc (_⊔_) Semiring-Large-Precategory = make-Large-Precategory ( Semiring) ( hom-set-Semiring) ( λ {l1} {l2} {l3} {R} {S} {T} → comp-hom-Semiring R S T) ( λ {l} {R} → id-hom-Semiring R) ( λ {l1} {l2} {l3} {l4} {R} {S} {T} {U} → associative-comp-hom-Semiring R S T U) ( λ {l1} {l2} {R} {S} → left-unit-law-comp-hom-Semiring R S) ( λ {l1} {l2} {R} {S} → right-unit-law-comp-hom-Semiring R S)
The precategory of small semirings
Semiring-Precategory : (l : Level) → Precategory (lsuc l) l Semiring-Precategory = precategory-Large-Precategory Semiring-Large-Precategory
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-05-06. Egbert Rijke. Collecting some easily defined precategories (#598).