Wide subprecategories
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-11-01.
Last modified on 2024-03-11.
module category-theory.wide-subprecategories where
Imports
open import category-theory.composition-operations-on-binary-families-of-sets open import category-theory.faithful-functors-precategories open import category-theory.functors-precategories open import category-theory.maps-precategories open import category-theory.precategories open import category-theory.subprecategories open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.identity-types open import foundation.iterated-dependent-product-types open import foundation.propositions open import foundation.sets open import foundation.strictly-involutive-identity-types open import foundation.subtypes open import foundation.unit-type open import foundation.universe-levels
Idea
A wide subprecategory of a precategory
C
is a subprecategory that contains all
the objects of C
.
Definitions
The predicate of being a wide subprecategory
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (P : Subprecategory l3 l4 C) where is-wide-prop-Subprecategory : Prop (l1 ⊔ l3) is-wide-prop-Subprecategory = Π-Prop (obj-Precategory C) (subtype-obj-Subprecategory C P) is-wide-Subprecategory : UU (l1 ⊔ l3) is-wide-Subprecategory = type-Prop is-wide-prop-Subprecategory is-prop-is-wide-Subprecategory : is-prop (is-wide-Subprecategory) is-prop-is-wide-Subprecategory = is-prop-type-Prop is-wide-prop-Subprecategory
Wide sub-hom-families of precategories
module _ {l1 l2 : Level} (l3 : Level) (C : Precategory l1 l2) where subtype-hom-wide-Precategory : UU (l1 ⊔ l2 ⊔ lsuc l3) subtype-hom-wide-Precategory = (x y : obj-Precategory C) → subtype l3 (hom-Precategory C x y)
Categorical predicates on wide sub-hom-families
module _ {l1 l2 l3 : Level} (C : Precategory l1 l2) (P₁ : subtype-hom-wide-Precategory l3 C) where contains-id-prop-subtype-hom-wide-Precategory : Prop (l1 ⊔ l3) contains-id-prop-subtype-hom-wide-Precategory = Π-Prop (obj-Precategory C) (λ x → P₁ x x (id-hom-Precategory C)) contains-id-subtype-hom-wide-Precategory : UU (l1 ⊔ l3) contains-id-subtype-hom-wide-Precategory = type-Prop contains-id-prop-subtype-hom-wide-Precategory is-prop-contains-id-subtype-hom-wide-Precategory : is-prop contains-id-subtype-hom-wide-Precategory is-prop-contains-id-subtype-hom-wide-Precategory = is-prop-type-Prop contains-id-prop-subtype-hom-wide-Precategory is-closed-under-composition-subtype-hom-wide-Precategory : UU (l1 ⊔ l2 ⊔ l3) is-closed-under-composition-subtype-hom-wide-Precategory = (x y z : obj-Precategory C) → (g : hom-Precategory C y z) → (f : hom-Precategory C x y) → is-in-subtype (P₁ y z) g → is-in-subtype (P₁ x y) f → is-in-subtype (P₁ x z) (comp-hom-Precategory C g f) is-prop-is-closed-under-composition-subtype-hom-wide-Precategory : is-prop is-closed-under-composition-subtype-hom-wide-Precategory is-prop-is-closed-under-composition-subtype-hom-wide-Precategory = is-prop-iterated-Π 7 ( λ x y z g f _ _ → is-prop-is-in-subtype (P₁ x z) (comp-hom-Precategory C g f)) is-closed-under-composition-prop-subtype-hom-wide-Precategory : Prop (l1 ⊔ l2 ⊔ l3) pr1 is-closed-under-composition-prop-subtype-hom-wide-Precategory = is-closed-under-composition-subtype-hom-wide-Precategory pr2 is-closed-under-composition-prop-subtype-hom-wide-Precategory = is-prop-is-closed-under-composition-subtype-hom-wide-Precategory
The predicate on subtypes of hom-sets of being a wide subprecategory
module _ {l1 l2 l3 : Level} (C : Precategory l1 l2) (P₁ : subtype-hom-wide-Precategory l3 C) where is-wide-subprecategory-Prop : Prop (l1 ⊔ l2 ⊔ l3) is-wide-subprecategory-Prop = product-Prop ( contains-id-prop-subtype-hom-wide-Precategory C P₁) ( is-closed-under-composition-prop-subtype-hom-wide-Precategory C P₁) is-wide-subprecategory : UU (l1 ⊔ l2 ⊔ l3) is-wide-subprecategory = type-Prop is-wide-subprecategory-Prop is-prop-is-wide-subprecategory : is-prop (is-wide-subprecategory) is-prop-is-wide-subprecategory = is-prop-type-Prop is-wide-subprecategory-Prop contains-id-is-wide-subprecategory : is-wide-subprecategory → contains-id-subtype-hom-wide-Precategory C P₁ contains-id-is-wide-subprecategory = pr1 is-closed-under-composition-is-wide-subprecategory : is-wide-subprecategory → is-closed-under-composition-subtype-hom-wide-Precategory C P₁ is-closed-under-composition-is-wide-subprecategory = pr2
Wide subprecategories
Wide-Subprecategory : {l1 l2 : Level} (l3 : Level) (C : Precategory l1 l2) → UU (l1 ⊔ l2 ⊔ lsuc l3) Wide-Subprecategory l3 C = Σ (subtype-hom-wide-Precategory l3 C) (is-wide-subprecategory C)
Objects in wide subprecategories
module _ {l1 l2 l3 : Level} (C : Precategory l1 l2) (P : Wide-Subprecategory l3 C) where subtype-obj-Wide-Subprecategory : subtype lzero (obj-Precategory C) subtype-obj-Wide-Subprecategory _ = unit-Prop obj-Wide-Subprecategory : UU l1 obj-Wide-Subprecategory = obj-Precategory C inclusion-obj-Wide-Subprecategory : obj-Wide-Subprecategory → obj-Precategory C inclusion-obj-Wide-Subprecategory = id
Morphisms in wide subprecategories
module _ {l1 l2 l3 : Level} (C : Precategory l1 l2) (P : Wide-Subprecategory l3 C) where subtype-hom-Wide-Subprecategory : subtype-hom-wide-Precategory l3 C subtype-hom-Wide-Subprecategory = pr1 P hom-Wide-Subprecategory : (x y : obj-Wide-Subprecategory C P) → UU (l2 ⊔ l3) hom-Wide-Subprecategory x y = type-subtype (subtype-hom-Wide-Subprecategory x y) inclusion-hom-Wide-Subprecategory : (x y : obj-Wide-Subprecategory C P) → hom-Wide-Subprecategory x y → hom-Precategory C ( inclusion-obj-Wide-Subprecategory C P x) ( inclusion-obj-Wide-Subprecategory C P y) inclusion-hom-Wide-Subprecategory x y = inclusion-subtype (subtype-hom-Wide-Subprecategory x y)
The predicate on morphisms between any objects of being contained in the wide subprecategory:
is-in-hom-Wide-Subprecategory : (x y : obj-Precategory C) (f : hom-Precategory C x y) → UU l3 is-in-hom-Wide-Subprecategory x y = is-in-subtype (subtype-hom-Wide-Subprecategory x y) is-prop-is-in-hom-Wide-Subprecategory : (x y : obj-Precategory C) (f : hom-Precategory C x y) → is-prop (is-in-hom-Wide-Subprecategory x y f) is-prop-is-in-hom-Wide-Subprecategory x y = is-prop-is-in-subtype (subtype-hom-Wide-Subprecategory x y) is-in-hom-inclusion-hom-Wide-Subprecategory : (x y : obj-Wide-Subprecategory C P) (f : hom-Wide-Subprecategory x y) → is-in-hom-Wide-Subprecategory ( inclusion-obj-Wide-Subprecategory C P x) ( inclusion-obj-Wide-Subprecategory C P y) ( inclusion-hom-Wide-Subprecategory x y f) is-in-hom-inclusion-hom-Wide-Subprecategory x y = is-in-subtype-inclusion-subtype (subtype-hom-Wide-Subprecategory x y)
Wide subprecategories are wide subprecategories:
is-wide-subprecategory-Wide-Subprecategory : is-wide-subprecategory C subtype-hom-Wide-Subprecategory is-wide-subprecategory-Wide-Subprecategory = pr2 P contains-id-Wide-Subprecategory : contains-id-subtype-hom-wide-Precategory C ( subtype-hom-Wide-Subprecategory) contains-id-Wide-Subprecategory = contains-id-is-wide-subprecategory C ( subtype-hom-Wide-Subprecategory) ( is-wide-subprecategory-Wide-Subprecategory) is-closed-under-composition-Wide-Subprecategory : is-closed-under-composition-subtype-hom-wide-Precategory C ( subtype-hom-Wide-Subprecategory) is-closed-under-composition-Wide-Subprecategory = is-closed-under-composition-is-wide-subprecategory C ( subtype-hom-Wide-Subprecategory) ( is-wide-subprecategory-Wide-Subprecategory)
Wide subprecategories are subprecategories:
subtype-hom-subprecategory-Wide-Subprecategory : subtype-hom-Precategory l3 C (subtype-obj-Wide-Subprecategory C P) subtype-hom-subprecategory-Wide-Subprecategory x y _ _ = subtype-hom-Wide-Subprecategory x y is-subprecategory-Wide-Subprecategory : is-subprecategory C ( subtype-obj-Wide-Subprecategory C P) ( subtype-hom-subprecategory-Wide-Subprecategory) pr1 is-subprecategory-Wide-Subprecategory x _ = contains-id-Wide-Subprecategory x pr2 is-subprecategory-Wide-Subprecategory x y z g f _ _ _ = is-closed-under-composition-Wide-Subprecategory x y z g f subprecategory-Wide-Subprecategory : Subprecategory lzero l3 C pr1 subprecategory-Wide-Subprecategory = subtype-obj-Wide-Subprecategory C P pr1 (pr2 subprecategory-Wide-Subprecategory) = subtype-hom-subprecategory-Wide-Subprecategory pr2 (pr2 subprecategory-Wide-Subprecategory) = is-subprecategory-Wide-Subprecategory is-wide-Wide-Subprecategory : is-wide-Subprecategory C (subprecategory-Wide-Subprecategory) is-wide-Wide-Subprecategory _ = star
The underlying precategory of a wide subprecategory
module _ {l1 l2 l3 : Level} (C : Precategory l1 l2) (P : Wide-Subprecategory l3 C) where hom-set-Wide-Subprecategory : (x y : obj-Wide-Subprecategory C P) → Set (l2 ⊔ l3) hom-set-Wide-Subprecategory x y = set-subset ( hom-set-Precategory C x y) ( subtype-hom-Wide-Subprecategory C P x y) is-set-hom-Wide-Subprecategory : (x y : obj-Wide-Subprecategory C P) → is-set (hom-Wide-Subprecategory C P x y) is-set-hom-Wide-Subprecategory x y = is-set-type-Set (hom-set-Wide-Subprecategory x y) id-hom-Wide-Subprecategory : {x : obj-Wide-Subprecategory C P} → hom-Wide-Subprecategory C P x x pr1 id-hom-Wide-Subprecategory = id-hom-Precategory C pr2 (id-hom-Wide-Subprecategory {x}) = contains-id-Wide-Subprecategory C P x comp-hom-Wide-Subprecategory : {x y z : obj-Wide-Subprecategory C P} → hom-Wide-Subprecategory C P y z → hom-Wide-Subprecategory C P x y → hom-Wide-Subprecategory C P x z pr1 (comp-hom-Wide-Subprecategory {x} {y} {z} g f) = comp-hom-Precategory C ( inclusion-hom-Wide-Subprecategory C P y z g) ( inclusion-hom-Wide-Subprecategory C P x y f) pr2 (comp-hom-Wide-Subprecategory {x} {y} {z} g f) = is-closed-under-composition-Wide-Subprecategory C P x y z ( inclusion-hom-Wide-Subprecategory C P y z g) ( inclusion-hom-Wide-Subprecategory C P x y f) ( is-in-hom-inclusion-hom-Wide-Subprecategory C P y z g) ( is-in-hom-inclusion-hom-Wide-Subprecategory C P x y f) associative-comp-hom-Wide-Subprecategory : {x y z w : obj-Wide-Subprecategory C P} (h : hom-Wide-Subprecategory C P z w) (g : hom-Wide-Subprecategory C P y z) (f : hom-Wide-Subprecategory C P x y) → comp-hom-Wide-Subprecategory (comp-hom-Wide-Subprecategory h g) f = comp-hom-Wide-Subprecategory h (comp-hom-Wide-Subprecategory g f) associative-comp-hom-Wide-Subprecategory {x} {y} {z} {w} h g f = eq-type-subtype ( subtype-hom-Wide-Subprecategory C P x w) ( associative-comp-hom-Precategory C ( inclusion-hom-Wide-Subprecategory C P z w h) ( inclusion-hom-Wide-Subprecategory C P y z g) ( inclusion-hom-Wide-Subprecategory C P x y f)) involutive-eq-associative-comp-hom-Wide-Subprecategory : {x y z w : obj-Wide-Subprecategory C P} (h : hom-Wide-Subprecategory C P z w) (g : hom-Wide-Subprecategory C P y z) (f : hom-Wide-Subprecategory C P x y) → comp-hom-Wide-Subprecategory (comp-hom-Wide-Subprecategory h g) f =ⁱ comp-hom-Wide-Subprecategory h (comp-hom-Wide-Subprecategory g f) involutive-eq-associative-comp-hom-Wide-Subprecategory h g f = involutive-eq-eq (associative-comp-hom-Wide-Subprecategory h g f) left-unit-law-comp-hom-Wide-Subprecategory : {x y : obj-Wide-Subprecategory C P} (f : hom-Wide-Subprecategory C P x y) → comp-hom-Wide-Subprecategory (id-hom-Wide-Subprecategory) f = f left-unit-law-comp-hom-Wide-Subprecategory {x} {y} f = eq-type-subtype ( subtype-hom-Wide-Subprecategory C P x y) ( left-unit-law-comp-hom-Precategory C ( inclusion-hom-Wide-Subprecategory C P x y f)) right-unit-law-comp-hom-Wide-Subprecategory : {x y : obj-Wide-Subprecategory C P} (f : hom-Wide-Subprecategory C P x y) → comp-hom-Wide-Subprecategory f (id-hom-Wide-Subprecategory) = f right-unit-law-comp-hom-Wide-Subprecategory {x} {y} f = eq-type-subtype ( subtype-hom-Wide-Subprecategory C P x y) ( right-unit-law-comp-hom-Precategory C ( inclusion-hom-Wide-Subprecategory C P x y f)) associative-composition-operation-Wide-Subprecategory : associative-composition-operation-binary-family-Set ( hom-set-Wide-Subprecategory) pr1 associative-composition-operation-Wide-Subprecategory = comp-hom-Wide-Subprecategory pr2 associative-composition-operation-Wide-Subprecategory = involutive-eq-associative-comp-hom-Wide-Subprecategory is-unital-composition-operation-Wide-Subprecategory : is-unital-composition-operation-binary-family-Set ( hom-set-Wide-Subprecategory) ( comp-hom-Wide-Subprecategory) pr1 is-unital-composition-operation-Wide-Subprecategory x = id-hom-Wide-Subprecategory pr1 (pr2 is-unital-composition-operation-Wide-Subprecategory) = left-unit-law-comp-hom-Wide-Subprecategory pr2 (pr2 is-unital-composition-operation-Wide-Subprecategory) = right-unit-law-comp-hom-Wide-Subprecategory precategory-Wide-Subprecategory : Precategory l1 (l2 ⊔ l3) pr1 precategory-Wide-Subprecategory = obj-Wide-Subprecategory C P pr1 (pr2 precategory-Wide-Subprecategory) = hom-set-Wide-Subprecategory pr1 (pr2 (pr2 precategory-Wide-Subprecategory)) = associative-composition-operation-Wide-Subprecategory pr2 (pr2 (pr2 precategory-Wide-Subprecategory)) = is-unital-composition-operation-Wide-Subprecategory
The inclusion functor of a wide subprecategory
module _ {l1 l2 l3 : Level} (C : Precategory l1 l2) (P : Wide-Subprecategory l3 C) where inclusion-map-Wide-Subprecategory : map-Precategory (precategory-Wide-Subprecategory C P) C pr1 inclusion-map-Wide-Subprecategory = inclusion-obj-Wide-Subprecategory C P pr2 inclusion-map-Wide-Subprecategory {x} {y} = inclusion-hom-Wide-Subprecategory C P x y is-functor-inclusion-Wide-Subprecategory : is-functor-map-Precategory ( precategory-Wide-Subprecategory C P) ( C) ( inclusion-map-Wide-Subprecategory) pr1 is-functor-inclusion-Wide-Subprecategory g f = refl pr2 is-functor-inclusion-Wide-Subprecategory x = refl inclusion-Wide-Subprecategory : functor-Precategory (precategory-Wide-Subprecategory C P) C pr1 inclusion-Wide-Subprecategory = inclusion-obj-Wide-Subprecategory C P pr1 (pr2 inclusion-Wide-Subprecategory) {x} {y} = inclusion-hom-Wide-Subprecategory C P x y pr2 (pr2 inclusion-Wide-Subprecategory) = is-functor-inclusion-Wide-Subprecategory
Properties
The inclusion functor is faithful and an equivalence on objects
module _ {l1 l2 l3 : Level} (C : Precategory l1 l2) (P : Wide-Subprecategory l3 C) where is-faithful-inclusion-Wide-Subprecategory : is-faithful-functor-Precategory ( precategory-Wide-Subprecategory C P) ( C) ( inclusion-Wide-Subprecategory C P) is-faithful-inclusion-Wide-Subprecategory x y = is-emb-inclusion-subtype (subtype-hom-Wide-Subprecategory C P x y) is-equiv-obj-inclusion-Wide-Subprecategory : is-equiv ( obj-functor-Precategory ( precategory-Wide-Subprecategory C P) ( C) ( inclusion-Wide-Subprecategory C P)) is-equiv-obj-inclusion-Wide-Subprecategory = is-equiv-id
External links
- Wide subcategories at 1lab
- wide subcategory at Lab
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2024-01-27. Egbert Rijke. Fix "The predicate of" section headers (#1010).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-11-09. Fredrik Bakke. Typeset
nlab
as$n$Lab
(#911).