The inclusion of the natural numbers into the conatural numbers
Content created by Fredrik Bakke.
Created on 2025-01-04.
Last modified on 2025-01-04.
{-# OPTIONS --guardedness #-} module elementary-number-theory.inclusion-natural-numbers-conatural-numbers where
Imports
open import elementary-number-theory.conatural-numbers open import elementary-number-theory.infinite-conatural-numbers open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.existential-quantification open import foundation.injective-maps open import foundation.negated-equality open import foundation.negation open import foundation.surjective-maps open import foundation-core.empty-types open import foundation-core.identity-types
Idea
The inclusion of the nautural numbers into the conatural numbers¶ is the inductively defined map
conatural-ℕ : ℕ → ℕ∞
that sends zero to zero, and the successor of a natural number to the successor of its inclusion.
Definitions
The canonical inclusion of the natural numbers into the conatural numbers
conatural-ℕ : ℕ → ℕ∞ conatural-ℕ zero-ℕ = zero-ℕ∞ conatural-ℕ (succ-ℕ x) = succ-ℕ∞ (conatural-ℕ x)
Properties
The canonical inclusion of the natural numbers is injective
is-injective-conatural-ℕ : is-injective conatural-ℕ is-injective-conatural-ℕ {zero-ℕ} {zero-ℕ} p = refl is-injective-conatural-ℕ {zero-ℕ} {succ-ℕ y} p = ex-falso (neq-zero-succ-ℕ∞ (conatural-ℕ y) (inv p)) is-injective-conatural-ℕ {succ-ℕ x} {zero-ℕ} p = ex-falso (neq-zero-succ-ℕ∞ (conatural-ℕ x) p) is-injective-conatural-ℕ {succ-ℕ x} {succ-ℕ y} p = ap succ-ℕ (is-injective-conatural-ℕ {x} {y} (is-injective-succ-ℕ∞ p))
The canonical inclusion of the natural numbers is not surjective
The canonical inclusion of the natural numbers is not surjective because it does not hit the point at infinity.
neq-infinity-conatural-ℕ : (n : ℕ) → conatural-ℕ n ≠ infinity-ℕ∞
neq-infinity-conatural-ℕ zero-ℕ = neq-infinity-zero-ℕ∞
neq-infinity-conatural-ℕ (succ-ℕ n) p =
neq-infinity-conatural-ℕ n
( is-injective-succ-ℕ∞ (p ∙ {! is-infinite-successor-condition-infinity-ℕ∞ !}))
is-not-surjective-conatural-ℕ : ¬ (is-surjective conatural-ℕ)
is-not-surjective-conatural-ℕ H =
elim-exists empty-Prop neq-infinity-conatural-ℕ (H infinity-ℕ∞)
Recent changes
- 2025-01-04. Fredrik Bakke. Coinductive definition of the conatural numbers (#1232).