The inclusion of the natural numbers into the conatural numbers

Content created by Fredrik Bakke.

Created on 2025-01-04.
Last modified on 2025-01-04.

{-# OPTIONS --guardedness #-}

module elementary-number-theory.inclusion-natural-numbers-conatural-numbers where
Imports
open import elementary-number-theory.conatural-numbers
open import elementary-number-theory.infinite-conatural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.action-on-identifications-functions
open import foundation.existential-quantification
open import foundation.injective-maps
open import foundation.negated-equality
open import foundation.negation
open import foundation.surjective-maps

open import foundation-core.empty-types
open import foundation-core.identity-types

Idea

The inclusion of the nautural numbers into the conatural numbers is the inductively defined map

  conatural-ℕ : ℕ → ℕ∞

that sends zero to zero, and the successor of a natural number to the successor of its inclusion.

Definitions

The canonical inclusion of the natural numbers into the conatural numbers

conatural-ℕ :   ℕ∞
conatural-ℕ zero-ℕ = zero-ℕ∞
conatural-ℕ (succ-ℕ x) = succ-ℕ∞ (conatural-ℕ x)

Properties

The canonical inclusion of the natural numbers is injective

is-injective-conatural-ℕ : is-injective conatural-ℕ
is-injective-conatural-ℕ {zero-ℕ} {zero-ℕ} p = refl
is-injective-conatural-ℕ {zero-ℕ} {succ-ℕ y} p =
  ex-falso (neq-zero-succ-ℕ∞ (conatural-ℕ y) (inv p))
is-injective-conatural-ℕ {succ-ℕ x} {zero-ℕ} p =
  ex-falso (neq-zero-succ-ℕ∞ (conatural-ℕ x) p)
is-injective-conatural-ℕ {succ-ℕ x} {succ-ℕ y} p =
  ap succ-ℕ (is-injective-conatural-ℕ {x} {y} (is-injective-succ-ℕ∞ p))

The canonical inclusion of the natural numbers is not surjective

The canonical inclusion of the natural numbers is not surjective because it does not hit the point at infinity.

neq-infinity-conatural-ℕ : (n : ℕ) → conatural-ℕ n ≠ infinity-ℕ∞
neq-infinity-conatural-ℕ zero-ℕ = neq-infinity-zero-ℕ∞
neq-infinity-conatural-ℕ (succ-ℕ n) p =
  neq-infinity-conatural-ℕ n
    ( is-injective-succ-ℕ∞ (p ∙ {! is-infinite-successor-condition-infinity-ℕ∞  !}))

is-not-surjective-conatural-ℕ : ¬ (is-surjective conatural-ℕ)
is-not-surjective-conatural-ℕ H =
  elim-exists empty-Prop neq-infinity-conatural-ℕ (H infinity-ℕ∞)

Recent changes