Located metric spaces
Content created by Louis Wasserman.
Created on 2025-08-30.
Last modified on 2025-09-02.
module metric-spaces.located-metric-spaces where
Imports
open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.empty-types open import foundation.existential-quantification open import foundation.function-types open import foundation.functoriality-disjunction open import foundation.logical-equivalences open import foundation.negation open import foundation.propositional-truncations open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.elements-at-bounded-distance-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.subspaces-metric-spaces open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.real-numbers-from-upper-dedekind-real-numbers open import real-numbers.upper-dedekind-real-numbers
Idea
A metric space is
located¶
if for any x
and y
in the metric space, and δ ε : ℚ⁺
with δ < ε
, merely
x
and y
are not in a δ
-neighborhood
or x
and y
are in an ε
-neighborhood.
If x
and y
are
at bounded distance,
then this suffices to define a
real number d
such that for all
ε : ℚ⁺
, d ≤ ε
if and only if x
and
y
are in an ε
-neighborhood of each other.
Definition
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) where is-located-prop-Metric-Space : Prop (l1 ⊔ l2) is-located-prop-Metric-Space = Π-Prop ( type-Metric-Space M) ( λ x → Π-Prop ( type-Metric-Space M) ( λ y → Π-Prop ( ℚ⁺) ( λ δ → Π-Prop ( ℚ⁺) ( λ ε → hom-Prop ( le-prop-ℚ⁺ δ ε) ( ¬' (neighborhood-prop-Metric-Space M δ x y) ∨ neighborhood-prop-Metric-Space M ε x y))))) is-located-Metric-Space : UU (l1 ⊔ l2) is-located-Metric-Space = type-Prop is-located-prop-Metric-Space Located-Metric-Space : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Located-Metric-Space l1 l2 = type-subtype (is-located-prop-Metric-Space {l1} {l2}) module _ {l1 l2 : Level} (X : Located-Metric-Space l1 l2) where metric-space-Located-Metric-Space : Metric-Space l1 l2 metric-space-Located-Metric-Space = pr1 X type-Located-Metric-Space : UU l1 type-Located-Metric-Space = type-Metric-Space metric-space-Located-Metric-Space is-located-metric-space-Located-Metric-Space : is-located-Metric-Space metric-space-Located-Metric-Space is-located-metric-space-Located-Metric-Space = pr2 X set-Located-Metric-Space : Set l1 set-Located-Metric-Space = set-Metric-Space metric-space-Located-Metric-Space subset-Located-Metric-Space : {l1 l2 : Level} (l3 : Level) (X : Located-Metric-Space l1 l2) → UU (l1 ⊔ lsuc l3) subset-Located-Metric-Space l3 X = subset-Metric-Space l3 (metric-space-Located-Metric-Space X)
Properties
Elements at bounded distance in a located metric space can be assigned a real distance
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) (L : is-located-Metric-Space M) (x y : type-Metric-Space M) (B : bounded-dist-Metric-Space M x y) where abstract is-located-dist-located-Metric-Space : (p q : ℚ) → le-ℚ p q → type-disjunction-Prop ( ¬' (cut-upper-ℝ (upper-real-dist-Metric-Space M x y B) p)) ( cut-upper-ℝ (upper-real-dist-Metric-Space M x y B) q) is-located-dist-located-Metric-Space p q p<q = rec-coproduct ( λ 0<p → let r = mediant-ℚ p q p⁺ = (p , is-positive-le-zero-ℚ p 0<p) p<r = le-left-mediant-ℚ p q p<q r<q = le-right-mediant-ℚ p q p<q r⁺ = ( r , is-positive-le-zero-ℚ r (transitive-le-ℚ zero-ℚ p r p<r 0<p)) in map-disjunction ( λ ¬Npxy p∈U → let open do-syntax-trunc-Prop empty-Prop in do ((ε⁺@(ε , _) , Nεxy) , ε<p) ← p∈U ¬Npxy ( monotonic-neighborhood-Metric-Space M x y ε⁺ p⁺ ε<p Nεxy)) ( λ Nrxy → intro-exists (r⁺ , Nrxy) r<q) ( L x y p⁺ r⁺ p<r)) ( λ p≤0 → inl-disjunction ( leq-zero-not-in-cut-upper-real-dist-Metric-Space M x y B p p≤0)) ( decide-le-leq-ℚ zero-ℚ p) opaque real-dist-located-Metric-Space : ℝ l2 real-dist-located-Metric-Space = real-upper-ℝ ( upper-real-dist-Metric-Space M x y B) ( is-located-dist-located-Metric-Space) ( intro-exists ( zero-ℚ) ( leq-zero-not-in-cut-upper-real-dist-Metric-Space M x y B zero-ℚ ( refl-leq-ℚ zero-ℚ))) opaque unfolding leq-ℝ' real-dist-located-Metric-Space real-ℚ leq-real-dist-Metric-Space : (ε : ℚ⁺) → leq-ℝ real-dist-located-Metric-Space (real-ℚ⁺ ε) ↔ neighborhood-Metric-Space M ε x y leq-real-dist-Metric-Space ε = leq-upper-real-dist-Metric-Space M x y B ε ∘iff leq-iff-ℝ' real-dist-located-Metric-Space (real-ℚ⁺ ε) is-nonnegative-real-dist-located-Metric-Space : is-nonnegative-ℝ real-dist-located-Metric-Space is-nonnegative-real-dist-located-Metric-Space = leq-leq'-ℝ ( zero-ℝ) ( real-dist-located-Metric-Space) ( leq-zero-upper-real-dist-Metric-Space M x y B) nonnegative-real-dist-Metric-Space : nonnegative-ℝ l2 nonnegative-real-dist-Metric-Space = ( real-dist-located-Metric-Space , is-nonnegative-real-dist-located-Metric-Space)
Recent changes
- 2025-09-02. Louis Wasserman. Metric spaces induced by metric functions (#1520).
- 2025-09-02. Louis Wasserman. Opacify real numbers (#1521).
- 2025-08-30. Louis Wasserman. Topology in metric spaces (#1474).