Commuting triangles of homotopies
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-02-18.
Last modified on 2024-04-17.
module foundation.commuting-triangles-of-homotopies where
Imports
open import foundation.commuting-triangles-of-identifications open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.function-types open import foundation-core.homotopies
Idea
A triangle of homotopies of dependent functions
top
f ----> g
\ /
left \ / right
∨ ∨
h
is said to
commute¶
if there is a homotopy left ~ top ∙h right
.
Definitions
Coherences of commuting triangles of homotopies
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} where coherence-triangle-homotopies : (left : f ~ h) (right : g ~ h) (top : f ~ g) → UU (l1 ⊔ l2) coherence-triangle-homotopies left right top = left ~ top ∙h right coherence-triangle-homotopies' : (left : f ~ h) (right : g ~ h) (top : f ~ g) → UU (l1 ⊔ l2) coherence-triangle-homotopies' left right top = top ∙h right ~ left
Properties
Left whiskering commuting triangles of homotopies with respect to concatenation of homotopies
Consider a commuting triangle of homotopies
top
f ----> g
\ /
left \ / right
∨ ∨
h
where f g h : (x : A) → B x
, and consider a homotopy H : i ~ f
for a fourth
dependent function i : (x : A) → B x
. Then the triangle of homotopies
H ∙h top
i --------> g
\ /
H ∙h left \ / right
\ /
∨ ∨
h
commutes.
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h i : (x : A) → B x} (H : i ~ f) (left : f ~ h) (right : g ~ h) (top : f ~ g) where left-whisker-concat-coherence-triangle-homotopies : (T : coherence-triangle-homotopies left right top) → coherence-triangle-homotopies (H ∙h left) right (H ∙h top) left-whisker-concat-coherence-triangle-homotopies T x = left-whisker-concat-coherence-triangle-identifications ( H x) ( left x) ( right x) ( top x) ( T x)
Right whiskering triangles of homotopies with respect to concatenation of homotopies
Consider a commuting triangle of homotopies
top
f ----> g
\ /
left \ / right
∨ ∨
h
where f g h : (x : A) → B x
, and consider a homotopy H : h ~ i
for a fourth
dependent function i : (x : A) → B x
. Then the triangle of homotopies
top
f --------> g
\ /
left ∙h H \ / right ∙h H
\ /
∨ ∨
i
commutes.
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} (left : f ~ h) (right : g ~ h) (top : f ~ g) where right-whisker-concat-coherence-triangle-homotopies : coherence-triangle-homotopies left right top → {i : (x : A) → B x} (H : h ~ i) → coherence-triangle-homotopies (left ∙h H) (right ∙h H) top right-whisker-concat-coherence-triangle-homotopies T H x = right-whisker-concat-coherence-triangle-identifications ( left x) ( right x) ( top x) ( H x) ( T x)
Left whiskering of commuting triangles of homotopies with respect to composition
Consider a commuting triangle of homotopies
top
f ----> g
\ /
left \ / right
∨ ∨
h
where f
, g
, and h
are maps A → B
. Furthermore, consider a map
i : B → X
. Then we obtain a commuting triangle of homotopies
i ·l top
i ∘ f --------> i ∘ g
\ /
i ·l left \ / i ·l right
\ /
∨ ∨
i ∘ h.
This notion of whiskering should be compared to whiskering higher homotopies with respect to composition.
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (i : B → X) {f g h : A → B} (left : f ~ h) (right : g ~ h) (top : f ~ g) where left-whisker-comp-coherence-triangle-homotopies : (T : coherence-triangle-homotopies left right top) → coherence-triangle-homotopies (i ·l left) (i ·l right) (i ·l top) left-whisker-comp-coherence-triangle-homotopies T x = map-coherence-triangle-identifications i (left x) (right x) (top x) (T x)
Right whiskering commuting triangles of homotopies with respect to composition
Consider a commuting triangle of homotopies
top
f ----> g
\ /
left \ / right
∨ ∨
h
where f
, g
, and h
are maps A → B
. Furthermore, consider a map
i : X → A
. Then we obtain a commuting triangle of homotopies
top ·r i
f ∘ i --------> g ∘ i
\ /
left ·r i \ / right ·r i
\ /
∨ ∨
h ∘ i.
This notion of whiskering should be compared to whiskering higher homotopies with respect to composition.
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {f g h : A → B} (left : f ~ h) (right : g ~ h) (top : f ~ g) where right-whisker-comp-coherence-triangle-homotopies : (T : coherence-triangle-homotopies left right top) (i : X → A) → coherence-triangle-homotopies (left ·r i) (right ·r i) (top ·r i) right-whisker-comp-coherence-triangle-homotopies T i = T ∘ i
Recent changes
- 2024-04-17. Fredrik Bakke. Splitting idempotents (#1105).
- 2024-02-19. Fredrik Bakke. Additions for coherently invertible maps (#1024).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2023-09-12. Egbert Rijke. Factoring out whiskering (#756).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).