Linear endomaps on vector spaces
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
module linear-algebra.linear-endomaps-vector-spaces where
Imports
open import commutative-algebra.heyting-fields open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.iterating-functions open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.linear-endomaps-left-modules-rings open import linear-algebra.linear-maps-left-modules-rings open import linear-algebra.linear-maps-vector-spaces open import linear-algebra.vector-spaces
Idea
A
linear endomap¶
on a vector space V is a
linear map from V to itself.
Definition
module _ {l1 l2 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) where is-linear-endo-prop-Vector-Space : (type-Vector-Space F V → type-Vector-Space F V) → Prop (l1 ⊔ l2) is-linear-endo-prop-Vector-Space = is-linear-map-prop-Vector-Space F V V is-linear-endo-Vector-Space : (type-Vector-Space F V → type-Vector-Space F V) → UU (l1 ⊔ l2) is-linear-endo-Vector-Space f = type-Prop (is-linear-endo-prop-Vector-Space f) linear-endo-Vector-Space : UU (l1 ⊔ l2) linear-endo-Vector-Space = type-subtype is-linear-endo-prop-Vector-Space module _ {l1 l2 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (f : linear-endo-Vector-Space F V) where map-linear-endo-Vector-Space : type-Vector-Space F V → type-Vector-Space F V map-linear-endo-Vector-Space = pr1 f is-linear-endo-map-linear-endo-Vector-Space : is-linear-endo-Vector-Space F V map-linear-endo-Vector-Space is-linear-endo-map-linear-endo-Vector-Space = pr2 f
Properties
A linear endomap maps zero to zero
module _ {l1 l2 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (f : linear-endo-Vector-Space F V) where abstract is-zero-map-zero-linear-endo-Vector-Space : is-zero-Vector-Space F V ( map-linear-endo-Vector-Space F V f (zero-Vector-Space F V)) is-zero-map-zero-linear-endo-Vector-Space = is-zero-map-zero-linear-map-Vector-Space F V V f
A linear endomap maps -v to the negation of the map of v
module _ {l1 l2 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (f : linear-endo-Vector-Space F V) where abstract map-neg-linear-endo-Vector-Space : (v : type-Vector-Space F V) → map-linear-endo-Vector-Space F V f (neg-Vector-Space F V v) = neg-Vector-Space F V (map-linear-endo-Vector-Space F V f v) map-neg-linear-endo-Vector-Space = map-neg-linear-map-Vector-Space F V V f
The identity map is a linear endomap
module _ {l1 l2 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) where is-linear-map-id-Vector-Space : is-linear-endo-Vector-Space F V id is-linear-map-id-Vector-Space = is-linear-map-id-left-module-Ring (ring-Heyting-Field F) V id-linear-endo-Vector-Space : linear-endo-Vector-Space F V id-linear-endo-Vector-Space = id-linear-endo-left-module-Ring (ring-Heyting-Field F) V
Composition of linear endomaps
module _ {l1 l2 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (g : type-Vector-Space F V → type-Vector-Space F V) (f : type-Vector-Space F V → type-Vector-Space F V) where abstract is-linear-endo-comp-Vector-Space : is-linear-endo-Vector-Space F V g → is-linear-endo-Vector-Space F V f → is-linear-endo-Vector-Space F V (g ∘ f) is-linear-endo-comp-Vector-Space = is-linear-map-comp-Vector-Space F V V V g f module _ {l1 l2 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (g : linear-endo-Vector-Space F V) (f : linear-endo-Vector-Space F V) where comp-linear-endo-Vector-Space : linear-endo-Vector-Space F V comp-linear-endo-Vector-Space = comp-linear-map-Vector-Space F V V V g f
Iterating linear endomaps
module _ {l1 l2 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) where abstract is-linear-endo-iterate-map-linear-endo-Vector-Space : (n : ℕ) (f : linear-endo-Vector-Space F V) → is-linear-endo-Vector-Space F V ( iterate n (map-linear-endo-Vector-Space F V f)) is-linear-endo-iterate-map-linear-endo-Vector-Space = is-linear-endo-iterate-map-linear-endo-left-module-Ring ( ring-Heyting-Field F) ( V) iterate-linear-endo-Vector-Space : ℕ → linear-endo-Vector-Space F V → linear-endo-Vector-Space F V iterate-linear-endo-Vector-Space = iterate-linear-endo-left-module-Ring (ring-Heyting-Field F) V
Recent changes
- 2026-01-30. Louis Wasserman. Linear algebra concepts (#1764).