1
-Types
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-02-08.
Last modified on 2023-11-01.
module foundation-core.1-types where
Imports
open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.truncated-types open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.sets open import foundation-core.truncation-levels
Definition
A 1-type is a type that is 1-truncated.
is-1-type : {l : Level} → UU l → UU l is-1-type = is-trunc one-𝕋 1-Type : (l : Level) → UU (lsuc l) 1-Type l = Σ (UU l) is-1-type type-1-Type : {l : Level} → 1-Type l → UU l type-1-Type = pr1 abstract is-1-type-type-1-Type : {l : Level} (A : 1-Type l) → is-1-type (type-1-Type A) is-1-type-type-1-Type = pr2
Properties
The identity type of a 1-type takes values in sets
Id-Set : {l : Level} (X : 1-Type l) (x y : type-1-Type X) → Set l pr1 (Id-Set X x y) = (x = y) pr2 (Id-Set X x y) = is-1-type-type-1-Type X x y
Any set is a 1-type
abstract is-1-type-is-set : {l : Level} {A : UU l} → is-set A → is-1-type A is-1-type-is-set = is-trunc-succ-is-trunc zero-𝕋 1-type-Set : {l : Level} → Set l → 1-Type l 1-type-Set = truncated-type-succ-Truncated-Type zero-𝕋
Any proposition is a 1-type
abstract is-1-type-is-prop : {l : Level} {P : UU l} → is-prop P → is-1-type P is-1-type-is-prop = is-trunc-iterated-succ-is-trunc neg-one-𝕋 2 1-type-Prop : {l : Level} → Prop l → 1-Type l 1-type-Prop P = truncated-type-iterated-succ-Truncated-Type neg-one-𝕋 2 P
Any contractible type is a 1-type
abstract is-1-type-is-contr : {l : Level} {A : UU l} → is-contr A → is-1-type A is-1-type-is-contr = is-trunc-is-contr one-𝕋
The 1-types are closed under equivalences
abstract is-1-type-is-equiv : {l1 l2 : Level} {A : UU l1} (B : UU l2) (f : A → B) → is-equiv f → is-1-type B → is-1-type A is-1-type-is-equiv = is-trunc-is-equiv one-𝕋 abstract is-1-type-equiv : {l1 l2 : Level} {A : UU l1} (B : UU l2) (e : A ≃ B) → is-1-type B → is-1-type A is-1-type-equiv = is-trunc-equiv one-𝕋 abstract is-1-type-is-equiv' : {l1 l2 : Level} (A : UU l1) {B : UU l2} (f : A → B) → is-equiv f → is-1-type A → is-1-type B is-1-type-is-equiv' = is-trunc-is-equiv' one-𝕋 abstract is-1-type-equiv' : {l1 l2 : Level} (A : UU l1) {B : UU l2} (e : A ≃ B) → is-1-type A → is-1-type B is-1-type-equiv' = is-trunc-equiv' one-𝕋
Recent changes
- 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).
- 2023-06-08. Fredrik Bakke. Examples of modalities and various fixes (#639).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644). - 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).
- 2023-03-07. Fredrik Bakke. Add blank lines between
<details>
tags and markdown syntax (#490).