The Archimedean property of integer fractions
Content created by Louis Wasserman.
Created on 2025-02-04.
Last modified on 2025-02-04.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.archimedean-property-integer-fractions where
Imports
open import elementary-number-theory.archimedean-property-integers open import elementary-number-theory.integer-fractions open import elementary-number-theory.integers open import elementary-number-theory.multiplication-integer-fractions open import elementary-number-theory.multiplication-integers open import elementary-number-theory.multiplication-positive-and-negative-integers open import elementary-number-theory.natural-numbers open import elementary-number-theory.positive-integer-fractions open import elementary-number-theory.strict-inequality-integer-fractions open import elementary-number-theory.strict-inequality-integers open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.transport-along-identifications
Definition
The Archimedean property of the integer fractions is that for any
x y : fraction-ℤ
, with positive x
, there is an n : ℕ
such that y
is less
than n
as an integer fraction times x
.
abstract archimedean-property-fraction-ℤ : (x y : fraction-ℤ) → is-positive-fraction-ℤ x → exists ℕ (λ n → le-fraction-ℤ-Prop y (in-fraction-ℤ (int-ℕ n) *fraction-ℤ x)) archimedean-property-fraction-ℤ x@(px , qx , pos-qx) y@(py , qy , pos-qy) pos-px = elim-exists (∃ ( ℕ) ( λ n → le-fraction-ℤ-Prop y (in-fraction-ℤ (int-ℕ n) *fraction-ℤ x))) ( λ n H → intro-exists ( n) ( tr ( le-ℤ (py *ℤ qx)) ( inv (associative-mul-ℤ (int-ℕ n) px qy)) ( H))) ( archimedean-property-ℤ ( px *ℤ qy) ( py *ℤ qx) ( is-positive-mul-ℤ pos-px pos-qy))
Recent changes
- 2025-02-04. Louis Wasserman. Archimedean property of
fraction-ℤ
(#1261).