The Archimedean property of integer fractions

Content created by Louis Wasserman.

Created on 2025-02-04.
Last modified on 2025-02-04.

{-# OPTIONS --lossy-unification #-}

module elementary-number-theory.archimedean-property-integer-fractions where
Imports
open import elementary-number-theory.archimedean-property-integers
open import elementary-number-theory.integer-fractions
open import elementary-number-theory.integers
open import elementary-number-theory.multiplication-integer-fractions
open import elementary-number-theory.multiplication-integers
open import elementary-number-theory.multiplication-positive-and-negative-integers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.positive-integer-fractions
open import elementary-number-theory.strict-inequality-integer-fractions
open import elementary-number-theory.strict-inequality-integers

open import foundation.dependent-pair-types
open import foundation.existential-quantification
open import foundation.identity-types
open import foundation.transport-along-identifications

Definition

The Archimedean property of the integer fractions is that for any x y : fraction-ℤ, with positive x, there is an n : ℕ such that y is less than n as an integer fraction times x.

abstract
  archimedean-property-fraction-ℤ :
    (x y : fraction-ℤ) 
    is-positive-fraction-ℤ x 
    exists
      
       n  le-fraction-ℤ-Prop y (in-fraction-ℤ (int-ℕ n) *fraction-ℤ x))
  archimedean-property-fraction-ℤ
    x@(px , qx , pos-qx) y@(py , qy , pos-qy) pos-px =
      elim-exists
        (
          ( )
          ( λ n 
            le-fraction-ℤ-Prop y (in-fraction-ℤ (int-ℕ n) *fraction-ℤ x)))
        ( λ n H 
          intro-exists
            ( n)
            ( tr
              ( le-ℤ (py *ℤ qx))
              ( inv (associative-mul-ℤ (int-ℕ n) px qy))
              ( H)))
        ( archimedean-property-ℤ
          ( px *ℤ qy)
          ( py *ℤ qx)
          ( is-positive-mul-ℤ pos-px pos-qy))

Recent changes