Subgroups of finite groups
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Maša Žaucer, Julian KG, fernabnor, Gregor Perčič and louismntnu.
Created on 2022-08-23.
Last modified on 2023-11-24.
module finite-group-theory.subgroups-finite-groups where
Imports
open import finite-group-theory.finite-groups open import finite-group-theory.finite-semigroups open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalence-relations open import foundation.equivalences open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import group-theory.decidable-subgroups open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.semigroups open import group-theory.subgroups open import group-theory.subsets-groups open import univalent-combinatorics.decidable-subtypes open import univalent-combinatorics.finite-types
Idea
A finite subgroup of a finite group G
is a decidable subgroup of G
.
Definitions
Decidable subsets of groups
decidable-subset-Group-𝔽 : (l : Level) {l1 : Level} (G : Group-𝔽 l1) → UU (lsuc l ⊔ l1) decidable-subset-Group-𝔽 l G = decidable-subset-Group l (group-Group-𝔽 G) is-set-decidable-subset-Group-𝔽 : (l : Level) {l1 : Level} (G : Group-𝔽 l1) → is-set (decidable-subset-Group-𝔽 l G) is-set-decidable-subset-Group-𝔽 l G = is-set-decidable-subset-Group l (group-Group-𝔽 G) module _ {l1 l2 : Level} (G : Group-𝔽 l1) (P : decidable-subset-Group-𝔽 l2 G) where subset-decidable-subset-Group-𝔽 : subset-Group l2 (group-Group-𝔽 G) subset-decidable-subset-Group-𝔽 = subset-decidable-subset-Group (group-Group-𝔽 G) P
Finite subgroups of finite groups
By default, finite subgroups of finite groups are considered to be decidable. Indeed, one can prove that if a subgroup of a finite group has a finite underlying type, then it must be a decidable subgroup.
module _ {l1 l2 : Level} (G : Group-𝔽 l1) (P : decidable-subset-Group-𝔽 l2 G) where contains-unit-prop-decidable-subset-Group-𝔽 : Prop l2 contains-unit-prop-decidable-subset-Group-𝔽 = contains-unit-prop-decidable-subset-Group ( group-Group-𝔽 G) ( P) contains-unit-decidable-subset-Group-𝔽 : UU l2 contains-unit-decidable-subset-Group-𝔽 = contains-unit-decidable-subset-Group ( group-Group-𝔽 G) ( P) is-prop-contains-unit-decidable-subset-Group-𝔽 : is-prop contains-unit-decidable-subset-Group-𝔽 is-prop-contains-unit-decidable-subset-Group-𝔽 = is-prop-contains-unit-decidable-subset-Group ( group-Group-𝔽 G) ( P) is-closed-under-multiplication-prop-decidable-subset-Group-𝔽 : Prop (l1 ⊔ l2) is-closed-under-multiplication-prop-decidable-subset-Group-𝔽 = is-closed-under-multiplication-prop-decidable-subset-Group ( group-Group-𝔽 G) ( P) is-closed-under-multiplication-decidable-subset-Group-𝔽 : UU (l1 ⊔ l2) is-closed-under-multiplication-decidable-subset-Group-𝔽 = is-closed-under-multiplication-decidable-subset-Group ( group-Group-𝔽 G) ( P) is-prop-is-closed-under-multiplication-decidable-subset-Group-𝔽 : is-prop is-closed-under-multiplication-decidable-subset-Group-𝔽 is-prop-is-closed-under-multiplication-decidable-subset-Group-𝔽 = is-prop-is-closed-under-multiplication-decidable-subset-Group ( group-Group-𝔽 G) ( P) is-closed-under-inverses-prop-decidable-subset-Group-𝔽 : Prop (l1 ⊔ l2) is-closed-under-inverses-prop-decidable-subset-Group-𝔽 = is-closed-under-inverses-prop-decidable-subset-Group ( group-Group-𝔽 G) ( P) is-closed-under-inverses-decidable-subset-Group-𝔽 : UU (l1 ⊔ l2) is-closed-under-inverses-decidable-subset-Group-𝔽 = is-closed-under-inverses-decidable-subset-Group ( group-Group-𝔽 G) ( P) is-prop-is-closed-under-inverses-decidable-subset-Group-𝔽 : is-prop is-closed-under-inverses-decidable-subset-Group-𝔽 is-prop-is-closed-under-inverses-decidable-subset-Group-𝔽 = is-prop-is-closed-under-inverses-decidable-subset-Group ( group-Group-𝔽 G) ( P) is-subgroup-prop-decidable-subset-Group-𝔽 : Prop (l1 ⊔ l2) is-subgroup-prop-decidable-subset-Group-𝔽 = is-subgroup-prop-decidable-subset-Group ( group-Group-𝔽 G) ( P) is-subgroup-decidable-subset-Group-𝔽 : UU (l1 ⊔ l2) is-subgroup-decidable-subset-Group-𝔽 = is-subgroup-decidable-subset-Group ( group-Group-𝔽 G) ( P) is-prop-is-subgroup-decidable-subset-Group-𝔽 : is-prop is-subgroup-decidable-subset-Group-𝔽 is-prop-is-subgroup-decidable-subset-Group-𝔽 = is-prop-is-subgroup-decidable-subset-Group ( group-Group-𝔽 G) ( P) Subgroup-𝔽 : (l : Level) {l1 : Level} (G : Group-𝔽 l1) → UU (lsuc l ⊔ l1) Subgroup-𝔽 l G = Decidable-Subgroup l (group-Group-𝔽 G) module _ {l1 l2 : Level} (G : Group-𝔽 l1) (H : Subgroup-𝔽 l2 G) where decidable-subset-Subgroup-𝔽 : decidable-subset-Group l2 (group-Group-𝔽 G) decidable-subset-Subgroup-𝔽 = decidable-subset-Decidable-Subgroup (group-Group-𝔽 G) H subset-Subgroup-𝔽 : subset-Group l2 (group-Group-𝔽 G) subset-Subgroup-𝔽 = subset-Decidable-Subgroup (group-Group-𝔽 G) H is-subgroup-subset-Subgroup-𝔽 : is-subgroup-subset-Group (group-Group-𝔽 G) subset-Subgroup-𝔽 is-subgroup-subset-Subgroup-𝔽 = is-subgroup-subset-Decidable-Subgroup (group-Group-𝔽 G) H subgroup-Subgroup-𝔽 : Subgroup l2 (group-Group-𝔽 G) subgroup-Subgroup-𝔽 = subgroup-Decidable-Subgroup (group-Group-𝔽 G) H type-Subgroup-𝔽 : UU (l1 ⊔ l2) type-Subgroup-𝔽 = type-Decidable-Subgroup (group-Group-𝔽 G) H is-finite-type-Subgroup-𝔽 : is-finite type-Subgroup-𝔽 is-finite-type-Subgroup-𝔽 = is-finite-type-subset-𝔽 (finite-type-Group-𝔽 G) decidable-subset-Subgroup-𝔽 finite-type-Subgroup-𝔽 : 𝔽 (l1 ⊔ l2) finite-type-Subgroup-𝔽 = finite-type-subset-𝔽 (finite-type-Group-𝔽 G) decidable-subset-Subgroup-𝔽 inclusion-Subgroup-𝔽 : type-Subgroup-𝔽 → type-Group-𝔽 G inclusion-Subgroup-𝔽 = inclusion-Decidable-Subgroup (group-Group-𝔽 G) H is-emb-inclusion-Subgroup-𝔽 : is-emb inclusion-Subgroup-𝔽 is-emb-inclusion-Subgroup-𝔽 = is-emb-inclusion-Decidable-Subgroup (group-Group-𝔽 G) H emb-inclusion-Subgroup-𝔽 : type-Subgroup-𝔽 ↪ type-Group-𝔽 G emb-inclusion-Subgroup-𝔽 = emb-inclusion-Decidable-Subgroup (group-Group-𝔽 G) H is-in-Subgroup-𝔽 : type-Group-𝔽 G → UU l2 is-in-Subgroup-𝔽 = is-in-Decidable-Subgroup (group-Group-𝔽 G) H is-in-subgroup-inclusion-Subgroup-𝔽 : (x : type-Subgroup-𝔽) → is-in-Subgroup-𝔽 (inclusion-Subgroup-𝔽 x) is-in-subgroup-inclusion-Subgroup-𝔽 = is-in-subgroup-inclusion-Decidable-Subgroup (group-Group-𝔽 G) H is-prop-is-in-Subgroup-𝔽 : (x : type-Group-𝔽 G) → is-prop (is-in-Subgroup-𝔽 x) is-prop-is-in-Subgroup-𝔽 = is-prop-is-in-Decidable-Subgroup (group-Group-𝔽 G) H contains-unit-Subgroup-𝔽 : contains-unit-subset-Group (group-Group-𝔽 G) subset-Subgroup-𝔽 contains-unit-Subgroup-𝔽 = contains-unit-Decidable-Subgroup (group-Group-𝔽 G) H is-closed-under-multiplication-Subgroup-𝔽 : is-closed-under-multiplication-subset-Group ( group-Group-𝔽 G) ( subset-Subgroup-𝔽) is-closed-under-multiplication-Subgroup-𝔽 = is-closed-under-multiplication-Decidable-Subgroup (group-Group-𝔽 G) H is-closed-under-inverses-Subgroup-𝔽 : is-closed-under-inverses-subset-Group (group-Group-𝔽 G) subset-Subgroup-𝔽 is-closed-under-inverses-Subgroup-𝔽 = is-closed-under-inverses-Decidable-Subgroup (group-Group-𝔽 G) H is-emb-decidable-subset-Subgroup-𝔽 : {l1 l2 : Level} (G : Group-𝔽 l1) → is-emb (decidable-subset-Subgroup-𝔽 {l2 = l2} G) is-emb-decidable-subset-Subgroup-𝔽 G = is-emb-decidable-subset-Decidable-Subgroup (group-Group-𝔽 G)
The underlying group of a decidable subgroup
module _ {l1 l2 : Level} (G : Group-𝔽 l1) (H : Subgroup-𝔽 l2 G) where type-group-Subgroup-𝔽 : UU (l1 ⊔ l2) type-group-Subgroup-𝔽 = type-Subgroup-𝔽 G H map-inclusion-group-Subgroup-𝔽 : type-group-Subgroup-𝔽 → type-Group-𝔽 G map-inclusion-group-Subgroup-𝔽 = inclusion-Subgroup-𝔽 G H is-emb-inclusion-group-Subgroup-𝔽 : is-emb map-inclusion-group-Subgroup-𝔽 is-emb-inclusion-group-Subgroup-𝔽 = is-emb-inclusion-Subgroup-𝔽 G H eq-subgroup-eq-Group-𝔽 : {x y : type-Subgroup-𝔽 G H} → ( inclusion-Subgroup-𝔽 G H x = inclusion-Subgroup-𝔽 G H y) → x = y eq-subgroup-eq-Group-𝔽 = eq-decidable-subgroup-eq-group (group-Group-𝔽 G) H set-group-Subgroup-𝔽 : Set (l1 ⊔ l2) set-group-Subgroup-𝔽 = set-group-Decidable-Subgroup (group-Group-𝔽 G) H mul-Subgroup-𝔽 : (x y : type-Subgroup-𝔽 G H) → type-Subgroup-𝔽 G H mul-Subgroup-𝔽 = mul-Decidable-Subgroup (group-Group-𝔽 G) H associative-mul-Subgroup-𝔽 : (x y z : type-Subgroup-𝔽 G H) → mul-Subgroup-𝔽 (mul-Subgroup-𝔽 x y) z = mul-Subgroup-𝔽 x (mul-Subgroup-𝔽 y z) associative-mul-Subgroup-𝔽 = associative-mul-Decidable-Subgroup (group-Group-𝔽 G) H unit-Subgroup-𝔽 : type-Subgroup-𝔽 G H unit-Subgroup-𝔽 = unit-Decidable-Subgroup (group-Group-𝔽 G) H left-unit-law-mul-Subgroup-𝔽 : (x : type-Subgroup-𝔽 G H) → mul-Subgroup-𝔽 unit-Subgroup-𝔽 x = x left-unit-law-mul-Subgroup-𝔽 = left-unit-law-mul-Decidable-Subgroup (group-Group-𝔽 G) H right-unit-law-mul-Subgroup-𝔽 : (x : type-Subgroup-𝔽 G H) → mul-Subgroup-𝔽 x unit-Subgroup-𝔽 = x right-unit-law-mul-Subgroup-𝔽 = right-unit-law-mul-Decidable-Subgroup (group-Group-𝔽 G) H inv-Subgroup-𝔽 : type-Subgroup-𝔽 G H → type-Subgroup-𝔽 G H inv-Subgroup-𝔽 = inv-Decidable-Subgroup (group-Group-𝔽 G) H left-inverse-law-mul-Subgroup-𝔽 : ( x : type-Subgroup-𝔽 G H) → mul-Subgroup-𝔽 (inv-Subgroup-𝔽 x) x = unit-Subgroup-𝔽 left-inverse-law-mul-Subgroup-𝔽 = left-inverse-law-mul-Decidable-Subgroup (group-Group-𝔽 G) H right-inverse-law-mul-Subgroup-𝔽 : (x : type-Subgroup-𝔽 G H) → mul-Subgroup-𝔽 x (inv-Subgroup-𝔽 x) = unit-Subgroup-𝔽 right-inverse-law-mul-Subgroup-𝔽 = right-inverse-law-mul-Decidable-Subgroup (group-Group-𝔽 G) H finite-semigroup-Subgroup-𝔽 : Semigroup-𝔽 (l1 ⊔ l2) pr1 finite-semigroup-Subgroup-𝔽 = finite-type-Subgroup-𝔽 G H pr1 (pr2 finite-semigroup-Subgroup-𝔽) = mul-Subgroup-𝔽 pr2 (pr2 finite-semigroup-Subgroup-𝔽) = associative-mul-Subgroup-𝔽 finite-group-Subgroup-𝔽 : Group-𝔽 (l1 ⊔ l2) pr1 finite-group-Subgroup-𝔽 = finite-semigroup-Subgroup-𝔽 pr1 (pr1 (pr2 finite-group-Subgroup-𝔽)) = unit-Subgroup-𝔽 pr1 (pr2 (pr1 (pr2 finite-group-Subgroup-𝔽))) = left-unit-law-mul-Subgroup-𝔽 pr2 (pr2 (pr1 (pr2 finite-group-Subgroup-𝔽))) = right-unit-law-mul-Subgroup-𝔽 pr1 (pr2 (pr2 finite-group-Subgroup-𝔽)) = inv-Subgroup-𝔽 pr1 (pr2 (pr2 (pr2 finite-group-Subgroup-𝔽))) = left-inverse-law-mul-Subgroup-𝔽 pr2 (pr2 (pr2 (pr2 finite-group-Subgroup-𝔽))) = right-inverse-law-mul-Subgroup-𝔽 semigroup-Subgroup-𝔽 : {l1 l2 : Level} (G : Group-𝔽 l1) → Subgroup-𝔽 l2 G → Semigroup (l1 ⊔ l2) semigroup-Subgroup-𝔽 G H = semigroup-Semigroup-𝔽 (finite-semigroup-Subgroup-𝔽 G H) group-Subgroup-𝔽 : {l1 l2 : Level} (G : Group-𝔽 l1) → Subgroup-𝔽 l2 G → Group (l1 ⊔ l2) group-Subgroup-𝔽 G H = group-Group-𝔽 (finite-group-Subgroup-𝔽 G H)
The inclusion homomorphism of the underlying finite group of a finite subgroup into the ambient group
module _ {l1 l2 : Level} (G : Group-𝔽 l1) (H : Subgroup-𝔽 l2 G) where preserves-mul-inclusion-group-Subgroup-𝔽 : preserves-mul-Group ( group-Subgroup-𝔽 G H) ( group-Group-𝔽 G) ( inclusion-Subgroup-𝔽 G H) preserves-mul-inclusion-group-Subgroup-𝔽 {x} {y} = preserves-mul-inclusion-Decidable-Subgroup (group-Group-𝔽 G) H {x} {y} preserves-unit-inclusion-group-Subgroup-𝔽 : preserves-unit-Group ( group-Subgroup-𝔽 G H) ( group-Group-𝔽 G) ( inclusion-Subgroup-𝔽 G H) preserves-unit-inclusion-group-Subgroup-𝔽 = preserves-unit-inclusion-Decidable-Subgroup (group-Group-𝔽 G) H preserves-inverses-inclusion-group-Subgroup-𝔽 : preserves-inverses-Group ( group-Subgroup-𝔽 G H) ( group-Group-𝔽 G) ( inclusion-Subgroup-𝔽 G H) preserves-inverses-inclusion-group-Subgroup-𝔽 {x} = preserves-inverses-inclusion-Decidable-Subgroup (group-Group-𝔽 G) H {x} inclusion-group-Subgroup-𝔽 : hom-Group (group-Subgroup-𝔽 G H) (group-Group-𝔽 G) inclusion-group-Subgroup-𝔽 = hom-inclusion-Decidable-Subgroup (group-Group-𝔽 G) H
Properties
Extensionality of the type of all subgroups
module _ {l1 l2 : Level} (G : Group-𝔽 l1) (H : Subgroup-𝔽 l2 G) where has-same-elements-Subgroup-𝔽 : {l3 : Level} → Subgroup-𝔽 l3 G → UU (l1 ⊔ l2 ⊔ l3) has-same-elements-Subgroup-𝔽 = has-same-elements-Decidable-Subgroup (group-Group-𝔽 G) H extensionality-Subgroup-𝔽 : (K : Subgroup-𝔽 l2 G) → (H = K) ≃ has-same-elements-Subgroup-𝔽 K extensionality-Subgroup-𝔽 = extensionality-Decidable-Subgroup (group-Group-𝔽 G) H
Every finite subgroup induces two equivalence relations
The equivalence relation where x ~ y
if and only if there exists u : H
such that xu = y
module _ {l1 l2 : Level} (G : Group-𝔽 l1) (H : Subgroup-𝔽 l2 G) where right-sim-Subgroup-𝔽 : (x y : type-Group-𝔽 G) → UU l2 right-sim-Subgroup-𝔽 = right-sim-Decidable-Subgroup (group-Group-𝔽 G) H is-prop-right-sim-Subgroup-𝔽 : (x y : type-Group-𝔽 G) → is-prop (right-sim-Subgroup-𝔽 x y) is-prop-right-sim-Subgroup-𝔽 = is-prop-right-sim-Decidable-Subgroup (group-Group-𝔽 G) H prop-right-equivalence-relation-Subgroup-𝔽 : (x y : type-Group-𝔽 G) → Prop l2 prop-right-equivalence-relation-Subgroup-𝔽 = prop-right-equivalence-relation-Decidable-Subgroup (group-Group-𝔽 G) H refl-right-sim-Subgroup-𝔽 : is-reflexive right-sim-Subgroup-𝔽 refl-right-sim-Subgroup-𝔽 = refl-right-sim-Decidable-Subgroup (group-Group-𝔽 G) H symmetric-right-sim-Subgroup-𝔽 : is-symmetric right-sim-Subgroup-𝔽 symmetric-right-sim-Subgroup-𝔽 = symmetric-right-sim-Decidable-Subgroup (group-Group-𝔽 G) H transitive-right-sim-Subgroup-𝔽 : is-transitive right-sim-Subgroup-𝔽 transitive-right-sim-Subgroup-𝔽 = transitive-right-sim-Decidable-Subgroup (group-Group-𝔽 G) H right-equivalence-relation-Subgroup-𝔽 : equivalence-relation l2 (type-Group-𝔽 G) right-equivalence-relation-Subgroup-𝔽 = right-equivalence-relation-Decidable-Subgroup (group-Group-𝔽 G) H
The equivalence relation where x ~ y
if and only if there exists u : H
such that ux = y
module _ {l1 l2 : Level} (G : Group-𝔽 l1) (H : Subgroup-𝔽 l2 G) where left-sim-Subgroup-𝔽 : (x y : type-Group-𝔽 G) → UU l2 left-sim-Subgroup-𝔽 = left-sim-Decidable-Subgroup (group-Group-𝔽 G) H is-prop-left-sim-Subgroup-𝔽 : (x y : type-Group-𝔽 G) → is-prop (left-sim-Subgroup-𝔽 x y) is-prop-left-sim-Subgroup-𝔽 = is-prop-left-sim-Decidable-Subgroup (group-Group-𝔽 G) H prop-left-equivalence-relation-Subgroup-𝔽 : (x y : type-Group-𝔽 G) → Prop l2 prop-left-equivalence-relation-Subgroup-𝔽 = prop-left-equivalence-relation-Decidable-Subgroup (group-Group-𝔽 G) H refl-left-sim-Subgroup-𝔽 : is-reflexive left-sim-Subgroup-𝔽 refl-left-sim-Subgroup-𝔽 = refl-left-sim-Decidable-Subgroup (group-Group-𝔽 G) H symmetric-left-sim-Subgroup-𝔽 : is-symmetric left-sim-Subgroup-𝔽 symmetric-left-sim-Subgroup-𝔽 = symmetric-left-sim-Decidable-Subgroup (group-Group-𝔽 G) H transitive-left-sim-Subgroup-𝔽 : is-transitive left-sim-Subgroup-𝔽 transitive-left-sim-Subgroup-𝔽 = transitive-left-sim-Decidable-Subgroup (group-Group-𝔽 G) H left-equivalence-relation-Subgroup-𝔽 : equivalence-relation l2 (type-Group-𝔽 G) left-equivalence-relation-Subgroup-𝔽 = left-equivalence-relation-Decidable-Subgroup (group-Group-𝔽 G) H
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-06-28. Fredrik Bakke. Localizations and other things (#655).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).