Homomorphisms of ring extensions of the rational numbers
Content created by Garrett Figueroa and malarbol.
Created on 2025-08-11.
Last modified on 2025-08-11.
{-# OPTIONS --lossy-unification #-} module ring-theory.homomorphisms-ring-extensions-rational-numbers where
Imports
open import foundation.universe-levels open import ring-theory.homomorphisms-rings open import ring-theory.ring-extensions-rational-numbers
Idea
Homomorphisms¶ of rational extensions of ℚ are homomorphisms between their underlying rings.
Definitions
Homorphisms of ring extensions of ℚ
module _ {l1 l2 : Level} (A : Rational-Extension-Ring l1) (B : Rational-Extension-Ring l2) where hom-Rational-Extension-Ring : UU (l1 ⊔ l2) hom-Rational-Extension-Ring = hom-Ring ( ring-Rational-Extension-Ring A) ( ring-Rational-Extension-Ring B) map-hom-Rational-Extension-Ring : hom-Rational-Extension-Ring → type-Rational-Extension-Ring A → type-Rational-Extension-Ring B map-hom-Rational-Extension-Ring = map-hom-Ring ( ring-Rational-Extension-Ring A) ( ring-Rational-Extension-Ring B)
Recent changes
- 2025-08-11. malarbol and Garrett Figueroa. Ring extensions of
ℚ
and rational modules (#1452).