Dependent products of finite rings
Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.
Created on 2023-05-25.
Last modified on 2024-02-07.
module finite-algebra.dependent-products-finite-rings where
Imports
open import finite-algebra.finite-rings open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.groups open import group-theory.monoids open import group-theory.semigroups open import ring-theory.dependent-products-rings open import ring-theory.rings open import ring-theory.semirings open import univalent-combinatorics.dependent-function-types open import univalent-combinatorics.finite-types
Idea
Given a family of finite rings A i
indexed by a finite type i : I
, their
dependent product Π(i:I), A i
is again a finite ring.
Definition
module _ {l1 l2 : Level} (I : 𝔽 l1) (A : type-𝔽 I → Ring-𝔽 l2) where semiring-Π-Ring-𝔽 : Semiring (l1 ⊔ l2) semiring-Π-Ring-𝔽 = semiring-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) ab-Π-Ring-𝔽 : Ab (l1 ⊔ l2) ab-Π-Ring-𝔽 = ab-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) group-Π-Ring-𝔽 : Group (l1 ⊔ l2) group-Π-Ring-𝔽 = group-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) semigroup-Π-Ring-𝔽 : Semigroup (l1 ⊔ l2) semigroup-Π-Ring-𝔽 = semigroup-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) multiplicative-monoid-Π-Ring-𝔽 : Monoid (l1 ⊔ l2) multiplicative-monoid-Π-Ring-𝔽 = multiplicative-monoid-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) set-Π-Ring-𝔽 : Set (l1 ⊔ l2) set-Π-Ring-𝔽 = set-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) type-Π-Ring-𝔽 : UU (l1 ⊔ l2) type-Π-Ring-𝔽 = type-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) is-finite-type-Π-Ring-𝔽 : is-finite (type-Π-Ring-𝔽) is-finite-type-Π-Ring-𝔽 = is-finite-Π (is-finite-type-𝔽 I) (λ i → is-finite-type-Ring-𝔽 (A i)) finite-type-Π-Ring-𝔽 : 𝔽 (l1 ⊔ l2) pr1 finite-type-Π-Ring-𝔽 = type-Π-Ring-𝔽 pr2 finite-type-Π-Ring-𝔽 = is-finite-type-Π-Ring-𝔽 is-set-type-Π-Ring-𝔽 : is-set type-Π-Ring-𝔽 is-set-type-Π-Ring-𝔽 = is-set-type-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) add-Π-Ring-𝔽 : type-Π-Ring-𝔽 → type-Π-Ring-𝔽 → type-Π-Ring-𝔽 add-Π-Ring-𝔽 = add-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) zero-Π-Ring-𝔽 : type-Π-Ring-𝔽 zero-Π-Ring-𝔽 = zero-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) neg-Π-Ring-𝔽 : type-Π-Ring-𝔽 → type-Π-Ring-𝔽 neg-Π-Ring-𝔽 = neg-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) associative-add-Π-Ring-𝔽 : (x y z : type-Π-Ring-𝔽) → Id (add-Π-Ring-𝔽 (add-Π-Ring-𝔽 x y) z) (add-Π-Ring-𝔽 x (add-Π-Ring-𝔽 y z)) associative-add-Π-Ring-𝔽 = associative-add-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) left-unit-law-add-Π-Ring-𝔽 : (x : type-Π-Ring-𝔽) → Id (add-Π-Ring-𝔽 zero-Π-Ring-𝔽 x) x left-unit-law-add-Π-Ring-𝔽 = left-unit-law-add-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) right-unit-law-add-Π-Ring-𝔽 : (x : type-Π-Ring-𝔽) → Id (add-Π-Ring-𝔽 x zero-Π-Ring-𝔽) x right-unit-law-add-Π-Ring-𝔽 = right-unit-law-add-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) left-inverse-law-add-Π-Ring-𝔽 : (x : type-Π-Ring-𝔽) → Id (add-Π-Ring-𝔽 (neg-Π-Ring-𝔽 x) x) zero-Π-Ring-𝔽 left-inverse-law-add-Π-Ring-𝔽 = left-inverse-law-add-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) right-inverse-law-add-Π-Ring-𝔽 : (x : type-Π-Ring-𝔽) → Id (add-Π-Ring-𝔽 x (neg-Π-Ring-𝔽 x)) zero-Π-Ring-𝔽 right-inverse-law-add-Π-Ring-𝔽 = right-inverse-law-add-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) commutative-add-Π-Ring-𝔽 : (x y : type-Π-Ring-𝔽) → Id (add-Π-Ring-𝔽 x y) (add-Π-Ring-𝔽 y x) commutative-add-Π-Ring-𝔽 = commutative-add-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) mul-Π-Ring-𝔽 : type-Π-Ring-𝔽 → type-Π-Ring-𝔽 → type-Π-Ring-𝔽 mul-Π-Ring-𝔽 = mul-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) one-Π-Ring-𝔽 : type-Π-Ring-𝔽 one-Π-Ring-𝔽 = one-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) associative-mul-Π-Ring-𝔽 : (x y z : type-Π-Ring-𝔽) → Id (mul-Π-Ring-𝔽 (mul-Π-Ring-𝔽 x y) z) (mul-Π-Ring-𝔽 x (mul-Π-Ring-𝔽 y z)) associative-mul-Π-Ring-𝔽 = associative-mul-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) left-unit-law-mul-Π-Ring-𝔽 : (x : type-Π-Ring-𝔽) → Id (mul-Π-Ring-𝔽 one-Π-Ring-𝔽 x) x left-unit-law-mul-Π-Ring-𝔽 = left-unit-law-mul-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) right-unit-law-mul-Π-Ring-𝔽 : (x : type-Π-Ring-𝔽) → Id (mul-Π-Ring-𝔽 x one-Π-Ring-𝔽) x right-unit-law-mul-Π-Ring-𝔽 = right-unit-law-mul-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) left-distributive-mul-add-Π-Ring-𝔽 : (f g h : type-Π-Ring-𝔽) → mul-Π-Ring-𝔽 f (add-Π-Ring-𝔽 g h) = add-Π-Ring-𝔽 (mul-Π-Ring-𝔽 f g) (mul-Π-Ring-𝔽 f h) left-distributive-mul-add-Π-Ring-𝔽 = left-distributive-mul-add-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) right-distributive-mul-add-Π-Ring-𝔽 : (f g h : type-Π-Ring-𝔽) → Id ( mul-Π-Ring-𝔽 (add-Π-Ring-𝔽 f g) h) ( add-Π-Ring-𝔽 (mul-Π-Ring-𝔽 f h) (mul-Π-Ring-𝔽 g h)) right-distributive-mul-add-Π-Ring-𝔽 = right-distributive-mul-add-Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) ring-Π-Ring-𝔽 : Ring (l1 ⊔ l2) ring-Π-Ring-𝔽 = Π-Ring (type-𝔽 I) (ring-Ring-𝔽 ∘ A) Π-Ring-𝔽 : Ring-𝔽 (l1 ⊔ l2) Π-Ring-𝔽 = finite-ring-is-finite-Ring ring-Π-Ring-𝔽 is-finite-type-Π-Ring-𝔽
Recent changes
- 2024-02-07. Fredrik Bakke. Deduplicate definitions (#1022).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-06-09. Fredrik Bakke. Remove unused imports (#648).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).
- 2023-05-25. Victor Blanchi and Egbert Rijke. Towards Hasse-Weil species (#631).