Closed interval preserving maps between posets
Content created by Louis Wasserman.
Created on 2025-10-02.
Last modified on 2025-10-02.
module order-theory.closed-interval-preserving-maps-posets where
Imports
open import foundation.images-subtypes open import foundation.propositions open import foundation.universe-levels open import order-theory.closed-intervals-posets open import order-theory.posets
Idea
A map between posets f : X → Y
is
closed interval preserving¶
if the image of a
closed interval in X
is always a
closed interval in Y
.
Definition
module _ {l1 l2 l3 l4 : Level} (X : Poset l1 l2) (Y : Poset l3 l4) (f : type-Poset X → type-Poset Y) where is-closed-interval-map-prop-Poset : ([a,b] : closed-interval-Poset X) → ([c,d] : closed-interval-Poset Y) → Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-closed-interval-map-prop-Poset [a,b] [c,d] = is-image-map-subtype-prop f ( subtype-closed-interval-Poset X [a,b]) ( subtype-closed-interval-Poset Y [c,d]) is-closed-interval-map-Poset : ([a,b] : closed-interval-Poset X) → ([c,d] : closed-interval-Poset Y) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-closed-interval-map-Poset [a,b] [c,d] = type-Prop (is-closed-interval-map-prop-Poset [a,b] [c,d])
Recent changes
- 2025-10-02. Louis Wasserman. Intervals and interval arithmetic (#1497).