Dependent products of large suplattices
Content created by Egbert Rijke, Fredrik Bakke, Julian KG, Maša Žaucer, fernabnor, Gregor Perčič and louismntnu.
Created on 2023-05-09.
Last modified on 2024-04-11.
module order-theory.dependent-products-large-suplattices where
Imports
open import foundation.large-binary-relations open import foundation.sets open import foundation.universe-levels open import order-theory.dependent-products-large-posets open import order-theory.large-posets open import order-theory.large-suplattices open import order-theory.least-upper-bounds-large-posets
Idea
Families of least upper bounds of families of elements in dependent products of large posets are again least upper bounds. Therefore it follows that dependent products of large suplattices are again large suplattices.
Definitions
module _ {α : Level → Level} {β : Level → Level → Level} {γ : Level} {l1 : Level} {I : UU l1} (L : I → Large-Suplattice α β γ) where large-poset-Π-Large-Suplattice : Large-Poset (λ l2 → α l2 ⊔ l1) (λ l2 l3 → β l2 l3 ⊔ l1) large-poset-Π-Large-Suplattice = Π-Large-Poset (λ i → large-poset-Large-Suplattice (L i)) is-large-suplattice-Π-Large-Suplattice : is-large-suplattice-Large-Poset γ large-poset-Π-Large-Suplattice sup-has-least-upper-bound-family-of-elements-Large-Poset ( is-large-suplattice-Π-Large-Suplattice {l2} {l3} {J} a) i = sup-Large-Suplattice (L i) (λ j → a j i) is-least-upper-bound-sup-has-least-upper-bound-family-of-elements-Large-Poset ( is-large-suplattice-Π-Large-Suplattice {l2} {l3} {J} a) = is-least-upper-bound-Π-Large-Poset ( λ i → large-poset-Large-Suplattice (L i)) ( a) ( λ i → sup-Large-Suplattice (L i) (λ j → a j i)) ( λ i → is-least-upper-bound-sup-Large-Suplattice (L i) (λ j → a j i)) Π-Large-Suplattice : Large-Suplattice (λ l2 → α l2 ⊔ l1) (λ l2 l3 → β l2 l3 ⊔ l1) γ large-poset-Large-Suplattice Π-Large-Suplattice = large-poset-Π-Large-Suplattice is-large-suplattice-Large-Suplattice Π-Large-Suplattice = is-large-suplattice-Π-Large-Suplattice set-Π-Large-Suplattice : (l : Level) → Set (α l ⊔ l1) set-Π-Large-Suplattice = set-Large-Suplattice Π-Large-Suplattice type-Π-Large-Suplattice : (l : Level) → UU (α l ⊔ l1) type-Π-Large-Suplattice = type-Large-Suplattice Π-Large-Suplattice is-set-type-Π-Large-Suplattice : {l : Level} → is-set (type-Π-Large-Suplattice l) is-set-type-Π-Large-Suplattice = is-set-type-Large-Suplattice Π-Large-Suplattice leq-prop-Π-Large-Suplattice : Large-Relation-Prop ( λ l2 l3 → β l2 l3 ⊔ l1) ( type-Π-Large-Suplattice) leq-prop-Π-Large-Suplattice = leq-prop-Large-Suplattice Π-Large-Suplattice leq-Π-Large-Suplattice : {l2 l3 : Level} (x : type-Π-Large-Suplattice l2) (y : type-Π-Large-Suplattice l3) → UU (β l2 l3 ⊔ l1) leq-Π-Large-Suplattice = leq-Large-Suplattice Π-Large-Suplattice is-prop-leq-Π-Large-Suplattice : is-prop-Large-Relation type-Π-Large-Suplattice leq-Π-Large-Suplattice is-prop-leq-Π-Large-Suplattice = is-prop-leq-Large-Suplattice Π-Large-Suplattice refl-leq-Π-Large-Suplattice : is-reflexive-Large-Relation type-Π-Large-Suplattice leq-Π-Large-Suplattice refl-leq-Π-Large-Suplattice = refl-leq-Large-Suplattice Π-Large-Suplattice antisymmetric-leq-Π-Large-Suplattice : is-antisymmetric-Large-Relation ( type-Π-Large-Suplattice) ( leq-Π-Large-Suplattice) antisymmetric-leq-Π-Large-Suplattice = antisymmetric-leq-Large-Suplattice Π-Large-Suplattice transitive-leq-Π-Large-Suplattice : is-transitive-Large-Relation ( type-Π-Large-Suplattice) ( leq-Π-Large-Suplattice) transitive-leq-Π-Large-Suplattice = transitive-leq-Large-Suplattice Π-Large-Suplattice sup-Π-Large-Suplattice : {l2 l3 : Level} {J : UU l2} (x : J → type-Π-Large-Suplattice l3) → type-Π-Large-Suplattice (γ ⊔ l2 ⊔ l3) sup-Π-Large-Suplattice = sup-Large-Suplattice Π-Large-Suplattice is-upper-bound-family-of-elements-Π-Large-Suplattice : {l2 l3 l4 : Level} {J : UU l2} (x : J → type-Π-Large-Suplattice l3) (y : type-Π-Large-Suplattice l4) → UU (β l3 l4 ⊔ l1 ⊔ l2) is-upper-bound-family-of-elements-Π-Large-Suplattice = is-upper-bound-family-of-elements-Large-Suplattice Π-Large-Suplattice is-least-upper-bound-family-of-elements-Π-Large-Suplattice : {l2 l3 l4 : Level} {J : UU l2} (x : J → type-Π-Large-Suplattice l3) → type-Π-Large-Suplattice l4 → UUω is-least-upper-bound-family-of-elements-Π-Large-Suplattice = is-least-upper-bound-family-of-elements-Large-Suplattice Π-Large-Suplattice is-least-upper-bound-sup-Π-Large-Suplattice : {l2 l3 : Level} {J : UU l2} (x : J → type-Π-Large-Suplattice l3) → is-least-upper-bound-family-of-elements-Π-Large-Suplattice x ( sup-Π-Large-Suplattice x) is-least-upper-bound-sup-Π-Large-Suplattice = is-least-upper-bound-sup-Large-Suplattice Π-Large-Suplattice
Recent changes
- 2024-04-11. Fredrik Bakke. Strict symmetrizations of binary relations (#1025).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-09-15. Egbert Rijke. update contributors, remove unused imports (#772).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).