Equivalence injective type families
Content created by Fredrik Bakke.
Created on 2024-01-28.
Last modified on 2024-01-28.
module foundation.equivalence-injective-type-families where
Imports
open import foundation.dependent-pair-types open import foundation.functoriality-dependent-function-types open import foundation.iterated-dependent-product-types open import foundation.univalence open import foundation.universal-property-equivalences open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.identity-types open import foundation-core.injective-maps open import foundation-core.propositions open import foundation-core.sets
Idea
We say a type family P
is
equivalence injective¶
if for every equivalence of types P x ≃ P y
we have x = y
. By univalence, the
structure of being equivalence injective is
equivalent to being injective as a map, but
more generally every equivalence injective type family must always be injective
as a map.
Note. The concept of equivalence injective type family as considered here is unrelated to the concept of “injective type” as studied by Martín Escardó in Injective types in univalent mathematics (arXiv:1903.01211, TypeTopology).
Definition
Equivalence injective type families
is-equivalence-injective : {l1 l2 : Level} {A : UU l1} → (A → UU l2) → UU (l1 ⊔ l2) is-equivalence-injective {A = A} P = {x y : A} → P x ≃ P y → x = y
Properties
Equivalence injective type families are injective as maps
module _ {l1 l2 : Level} {A : UU l1} {P : A → UU l2} where is-injective-is-equivalence-injective : is-equivalence-injective P → is-injective P is-injective-is-equivalence-injective H = H ∘ equiv-eq is-equivalence-injective-is-injective : is-injective P → is-equivalence-injective P is-equivalence-injective-is-injective H = H ∘ eq-equiv is-equiv-is-injective-is-equivalence-injective : is-equiv is-injective-is-equivalence-injective is-equiv-is-injective-is-equivalence-injective = is-equiv-map-implicit-Π-is-fiberwise-equiv ( λ x → is-equiv-map-implicit-Π-is-fiberwise-equiv ( λ y → is-equiv-precomp-is-equiv ( equiv-eq) ( univalence (P x) (P y)) ( x = y))) equiv-is-injective-is-equivalence-injective : is-equivalence-injective P ≃ is-injective P pr1 equiv-is-injective-is-equivalence-injective = is-injective-is-equivalence-injective pr2 equiv-is-injective-is-equivalence-injective = is-equiv-is-injective-is-equivalence-injective equiv-is-equivalence-injective-is-injective : is-injective P ≃ is-equivalence-injective P equiv-is-equivalence-injective-is-injective = inv-equiv equiv-is-injective-is-equivalence-injective
For a type family over a set, being equivalence injective is a property
module _ {l1 l2 : Level} {A : UU l1} (is-set-A : is-set A) (P : A → UU l2) where is-prop-is-equivalence-injective : is-prop (is-equivalence-injective P) is-prop-is-equivalence-injective = is-prop-iterated-implicit-Π 2 (λ x y → is-prop-function-type (is-set-A x y)) is-equivalence-injective-Prop : Prop (l1 ⊔ l2) pr1 is-equivalence-injective-Prop = is-equivalence-injective P pr2 is-equivalence-injective-Prop = is-prop-is-equivalence-injective
Recent changes
- 2024-01-28. Fredrik Bakke. Equivalence injective type families (#1009).