The multiplicative monoid of nonnegative rational numbers
Content created by Louis Wasserman.
Created on 2025-10-19.
Last modified on 2025-10-19.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.multiplicative-monoid-of-nonnegative-rational-numbers where
Imports
open import elementary-number-theory.multiplication-nonnegative-rational-numbers open import elementary-number-theory.multiplicative-monoid-of-rational-numbers open import elementary-number-theory.nonnegative-rational-numbers open import foundation.dependent-pair-types open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.monoids open import group-theory.submonoids-commutative-monoids
Idea
The type of
nonnegative
rational numbers equipped with
multiplication
is a commutative monoid with unit
one-ℚ⁰⁺
.
Definitions
The multiplicative commutative monoid of nonnegative rational numbers
nonnegative-submonoid-commutative-monoid-mul-ℚ : Commutative-Submonoid lzero commutative-monoid-mul-ℚ nonnegative-submonoid-commutative-monoid-mul-ℚ = ( is-nonnegative-prop-ℚ , is-nonnegative-one-ℚ , λ _ _ → is-nonnegative-mul-ℚ) commutative-monoid-mul-ℚ⁰⁺ : Commutative-Monoid lzero commutative-monoid-mul-ℚ⁰⁺ = commutative-monoid-Commutative-Submonoid ( commutative-monoid-mul-ℚ) ( nonnegative-submonoid-commutative-monoid-mul-ℚ) monoid-mul-ℚ⁰⁺ : Monoid lzero monoid-mul-ℚ⁰⁺ = monoid-Commutative-Monoid commutative-monoid-mul-ℚ⁰⁺
Recent changes
- 2025-10-19. Louis Wasserman. Powers of arbitrary rational numbers (#1608).