Integer multiples of elements in large abelian groups
Content created by Louis Wasserman.
Created on 2025-10-17.
Last modified on 2025-10-17.
module group-theory.integer-multiples-of-elements-large-abelian-groups where
Imports
open import elementary-number-theory.addition-integers open import elementary-number-theory.integers open import elementary-number-theory.multiplication-integers open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import group-theory.integer-powers-of-elements-large-groups open import group-theory.large-abelian-groups open import group-theory.multiples-of-elements-large-abelian-groups
Idea
The integer
multiplication¶
on a large abelian group is the map
k x ↦ kx
, which is defined by
iteratively adding x
with itself an
integer k
times.
Definition
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where int-multiple-Large-Ab : {l : Level} → ℤ → type-Large-Ab G l → type-Large-Ab G l int-multiple-Large-Ab = int-power-Large-Group (large-group-Large-Ab G)
Properties
The canonical embedding of natural numbers in the integers preserves powers
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract int-multiple-int-Large-Ab : {l : Level} (n : ℕ) (x : type-Large-Ab G l) → int-multiple-Large-Ab G (int-ℕ n) x = multiple-Large-Ab G n x int-multiple-int-Large-Ab = int-power-int-Large-Group (large-group-Large-Ab G)
The integer multiple 0x
is 0
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract left-zero-law-int-multiple-Large-Ab : {l : Level} (x : type-Large-Ab G l) → int-multiple-Large-Ab G zero-ℤ x = raise-zero-Large-Ab G l left-zero-law-int-multiple-Large-Ab = int-power-zero-Large-Group (large-group-Large-Ab G)
The integer multiple 1x
is x
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract int-multiple-one-Large-Ab : {l : Level} (x : type-Large-Ab G l) → int-multiple-Large-Ab G one-ℤ x = x int-multiple-one-Large-Ab = int-power-one-Large-Group (large-group-Large-Ab G)
The integer multiple (-1)x
is -x
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract int-multiple-neg-one-Large-Ab : {l : Level} (x : type-Large-Ab G l) → int-multiple-Large-Ab G neg-one-ℤ x = neg-Large-Ab G x int-multiple-neg-one-Large-Ab = int-power-neg-one-Large-Group (large-group-Large-Ab G)
(m + n) ∙ x = m ∙ x + n ∙ x
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract right-distributive-int-multiple-add-Large-Ab : {l : Level} (x : type-Large-Ab G l) (m n : ℤ) → int-multiple-Large-Ab G (m +ℤ n) x = add-Large-Ab G (int-multiple-Large-Ab G m x) (int-multiple-Large-Ab G n x) right-distributive-int-multiple-add-Large-Ab = distributive-int-power-add-Large-Group (large-group-Large-Ab G)
(-n) ∙ x = -(n ∙ x)
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract int-multiple-neg-Large-Ab : {l : Level} (n : ℤ) (x : type-Large-Ab G l) → int-multiple-Large-Ab G (neg-ℤ n) x = neg-Large-Ab G (int-multiple-Large-Ab G n x) int-multiple-neg-Large-Ab = int-power-neg-Large-Group (large-group-Large-Ab G)
(k + 1) ∙ x = k ∙ x + x = x + k ∙ x
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract int-multiple-succ-Large-Ab : {l : Level} (n : ℤ) (x : type-Large-Ab G l) → int-multiple-Large-Ab G (succ-ℤ n) x = add-Large-Ab G (int-multiple-Large-Ab G n x) x int-multiple-succ-Large-Ab = int-power-succ-Large-Group (large-group-Large-Ab G) int-multiple-succ-Large-Ab' : {l : Level} (n : ℤ) (x : type-Large-Ab G l) → int-multiple-Large-Ab G (succ-ℤ n) x = add-Large-Ab G x (int-multiple-Large-Ab G n x) int-multiple-succ-Large-Ab' = int-power-succ-Large-Group' (large-group-Large-Ab G)
(k - 1) ∙ x = k ∙ x - x = -x + k ∙ x
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract int-multiple-pred-Large-Ab : {l : Level} (n : ℤ) (x : type-Large-Ab G l) → int-multiple-Large-Ab G (pred-ℤ n) x = add-Large-Ab G (int-multiple-Large-Ab G n x) (neg-Large-Ab G x) int-multiple-pred-Large-Ab = int-power-pred-Large-Group (large-group-Large-Ab G) int-multiple-pred-Large-Ab' : {l : Level} (n : ℤ) (x : type-Large-Ab G l) → int-multiple-Large-Ab G (pred-ℤ n) x = add-Large-Ab G (neg-Large-Ab G x) (int-multiple-Large-Ab G n x) int-multiple-pred-Large-Ab' = int-power-pred-Large-Group' (large-group-Large-Ab G)
k ∙ 0 = 0
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract right-zero-law-int-multiple-Large-Ab : (l : Level) (k : ℤ) → int-multiple-Large-Ab G k (raise-zero-Large-Ab G l) = raise-zero-Large-Ab G l right-zero-law-int-multiple-Large-Ab = raise-int-power-unit-Large-Group (large-group-Large-Ab G)
Integer multiples distribute over the sum of x
and y
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract left-distributive-int-multiple-add-Large-Ab : {l1 l2 : Level} (k : ℤ) → (x : type-Large-Ab G l1) (y : type-Large-Ab G l2) → int-multiple-Large-Ab G k (add-Large-Ab G x y) = add-Large-Ab G (int-multiple-Large-Ab G k x) (int-multiple-Large-Ab G k y) left-distributive-int-multiple-add-Large-Ab k x y = distributive-int-power-mul-Large-Group ( large-group-Large-Ab G) ( k) ( x) ( y) ( commutative-add-Large-Ab G x y)
Multiples by products of integers are iterated integer multiples
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract int-multiple-mul-Large-Group : {l1 : Level} (k l : ℤ) (x : type-Large-Ab G l1) → int-multiple-Large-Ab G (k *ℤ l) x = int-multiple-Large-Ab G l (int-multiple-Large-Ab G k x) int-multiple-mul-Large-Group = int-power-mul-Large-Group (large-group-Large-Ab G)
See also
- Natural multiples of elements of large abelian groups
- Integer multiples of elements of small abelian groups
Recent changes
- 2025-10-17. Louis Wasserman. Large abelian groups and commutative monoids (#1602).