Conjugation in groups
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Elisabeth Stenholm and maybemabeline.
Created on 2022-03-17.
Last modified on 2024-02-23.
module group-theory.conjugation where
Imports
open import elementary-number-theory.integers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalence-extensionality open import foundation.equivalences open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.retractions open import foundation.sections open import foundation.subtypes open import foundation.transposition-identifications-along-retractions open import foundation.transposition-identifications-along-sections open import foundation.universe-levels open import group-theory.group-actions open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.integer-powers-of-elements-groups open import group-theory.isomorphisms-groups open import group-theory.subsets-groups
Idea
Conjugation by an element x
of a group G
is
the map y ↦ (xy)x⁻¹
. This can be seen as a homomorphism G → G
as well as a
group action of G
onto itself.
The delooping of the conjugation homomorphism is defined in
structured-types.conjugation-pointed-types.md
`.
Definitions
Conjugation
module _ {l : Level} (G : Group l) where equiv-conjugation-Group : (x : type-Group G) → type-Group G ≃ type-Group G equiv-conjugation-Group x = equiv-mul-Group' G (inv-Group G x) ∘e equiv-mul-Group G x conjugation-Group : (x : type-Group G) → type-Group G → type-Group G conjugation-Group x = map-equiv (equiv-conjugation-Group x) equiv-conjugation-Group' : (x : type-Group G) → type-Group G ≃ type-Group G equiv-conjugation-Group' x = equiv-mul-Group' G x ∘e equiv-mul-Group G (inv-Group G x) conjugation-Group' : (x : type-Group G) → type-Group G → type-Group G conjugation-Group' x = map-equiv (equiv-conjugation-Group' x)
The conjugation action of a group on itself
module _ {l1 : Level} (G : Group l1) where conjugation-action-Group : action-Group G l1 pr1 conjugation-action-Group = set-Group G pr1 (pr2 conjugation-action-Group) g = equiv-conjugation-Group G g pr2 (pr2 conjugation-action-Group) {g} {h} = eq-htpy-equiv ( λ x → ( ap-mul-Group G ( associative-mul-Group G g h x) ( distributive-inv-mul-Group G)) ∙ ( inv ( associative-mul-Group G ( mul-Group G g (mul-Group G h x)) ( inv-Group G h) ( inv-Group G g))) ∙ ( ap ( mul-Group' G (inv-Group G g)) ( associative-mul-Group G g ( mul-Group G h x) ( inv-Group G h))))
The predicate on subsets of groups of being closed under conjugation
module _ {l1 l2 : Level} (G : Group l1) (S : subset-Group l2 G) where is-closed-under-conjugation-subset-Group : UU (l1 ⊔ l2) is-closed-under-conjugation-subset-Group = (x y : type-Group G) → is-in-subtype S y → is-in-subtype S (conjugation-Group G x y)
Properties
Laws for conjugation and multiplication
module _ {l : Level} (G : Group l) where conjugation-unit-Group : (x : type-Group G) → conjugation-Group G x (unit-Group G) = unit-Group G conjugation-unit-Group x = ( ap (mul-Group' G (inv-Group G x)) (right-unit-law-mul-Group G x)) ∙ ( right-inverse-law-mul-Group G x) compute-conjugation-unit-Group : conjugation-Group G (unit-Group G) ~ id compute-conjugation-unit-Group x = ( ap-mul-Group G (left-unit-law-mul-Group G x) (inv-unit-Group G)) ∙ ( right-unit-law-mul-Group G x) compute-conjugation-mul-Group : (x y : type-Group G) → conjugation-Group G (mul-Group G x y) ~ (conjugation-Group G x ∘ conjugation-Group G y) compute-conjugation-mul-Group x y z = ( ap-mul-Group G ( associative-mul-Group G x y z) ( distributive-inv-mul-Group G)) ∙ ( inv ( associative-mul-Group G ( mul-Group G x (mul-Group G y z)) ( inv-Group G y) ( inv-Group G x))) ∙ ( ap ( mul-Group' G (inv-Group G x)) ( associative-mul-Group G x (mul-Group G y z) (inv-Group G y))) compute-conjugation-mul-Group' : (x y : type-Group G) → conjugation-Group' G (mul-Group G x y) ~ ( conjugation-Group' G y ∘ conjugation-Group' G x) compute-conjugation-mul-Group' x y z = ( ap ( mul-Group' G (mul-Group G x y)) ( ( ap (mul-Group' G z) (distributive-inv-mul-Group G)) ∙ ( associative-mul-Group G ( inv-Group G y) ( inv-Group G x) ( z)))) ∙ ( associative-mul-Group G ( inv-Group G y) ( left-div-Group G x z) ( mul-Group G x y)) ∙ ( ap ( left-div-Group G y) ( inv (associative-mul-Group G (left-div-Group G x z) x y))) ∙ ( inv ( associative-mul-Group G ( inv-Group G y) ( conjugation-Group' G x z) ( y))) htpy-conjugation-Group : (x : type-Group G) → conjugation-Group' G x ~ conjugation-Group G (inv-Group G x) htpy-conjugation-Group x y = ap ( mul-Group G (mul-Group G (inv-Group G x) y)) ( inv (inv-inv-Group G x)) htpy-conjugation-Group' : (x : type-Group G) → conjugation-Group G x ~ conjugation-Group' G (inv-Group G x) htpy-conjugation-Group' x y = ap ( mul-Group' G (inv-Group G x)) ( ap (mul-Group' G y) (inv (inv-inv-Group G x))) right-conjugation-law-mul-Group : (x y : type-Group G) → mul-Group G (inv-Group G x) (conjugation-Group G x y) = right-div-Group G y x right-conjugation-law-mul-Group x y = inv ( transpose-eq-mul-Group' G ( inv (associative-mul-Group G x y (inv-Group G x)))) right-conjugation-law-mul-Group' : (x y : type-Group G) → mul-Group G x (conjugation-Group' G x y) = mul-Group G y x right-conjugation-law-mul-Group' x y = ( ap ( mul-Group G x) ( associative-mul-Group G (inv-Group G x) y x)) ∙ ( is-section-left-div-Group G x (mul-Group G y x)) left-conjugation-law-mul-Group : (x y : type-Group G) → mul-Group G (conjugation-Group G x y) x = mul-Group G x y left-conjugation-law-mul-Group x y = ( associative-mul-Group G (mul-Group G x y) (inv-Group G x) x) ∙ ( ap ( mul-Group G (mul-Group G x y)) ( left-inverse-law-mul-Group G x)) ∙ ( right-unit-law-mul-Group G (mul-Group G x y)) left-conjugation-law-mul-Group' : (x y : type-Group G) → mul-Group G (conjugation-Group' G x y) (inv-Group G x) = left-div-Group G x y left-conjugation-law-mul-Group' x y = is-retraction-right-div-Group G x (mul-Group G (inv-Group G x) y) distributive-conjugation-mul-Group : (x y z : type-Group G) → conjugation-Group G x (mul-Group G y z) = mul-Group G (conjugation-Group G x y) (conjugation-Group G x z) distributive-conjugation-mul-Group x y z = ( ap ( mul-Group' G (inv-Group G x)) ( ( inv (associative-mul-Group G x y z)) ∙ ( ap ( mul-Group' G z) ( inv (is-section-right-div-Group G x (mul-Group G x y)))) ∙ ( associative-mul-Group G ( conjugation-Group G x y) ( x) ( z)))) ∙ ( associative-mul-Group G ( conjugation-Group G x y) ( mul-Group G x z) ( inv-Group G x)) conjugation-inv-Group : (x y : type-Group G) → conjugation-Group G x (inv-Group G y) = inv-Group G (conjugation-Group G x y) conjugation-inv-Group x y = ( inv (inv-inv-Group G (conjugation-Group G x (inv-Group G y)))) ∙ ( ap ( inv-Group G) ( ( distributive-inv-mul-Group G) ∙ ( ap-mul-Group G ( inv-inv-Group G x) ( ( distributive-inv-mul-Group G) ∙ ( ap ( mul-Group' G (inv-Group G x)) ( inv-inv-Group G y)))) ∙ ( inv (associative-mul-Group G x y ( inv-Group G x))))) conjugation-inv-Group' : (x y : type-Group G) → conjugation-Group' G x (inv-Group G y) = inv-Group G (conjugation-Group' G x y) conjugation-inv-Group' x y = ( ap (mul-Group' G x) (inv (distributive-inv-mul-Group G))) ∙ ( ap ( mul-Group G (inv-Group G (mul-Group G y x))) ( inv (inv-inv-Group G x))) ∙ ( inv ( distributive-inv-mul-Group G)) ∙ ( ap ( inv-Group G) ( inv (associative-mul-Group G (inv-Group G x) y x))) conjugation-left-div-Group : (x y : type-Group G) → conjugation-Group G x (left-div-Group G x y) = right-div-Group G y x conjugation-left-div-Group x y = ap (λ y → right-div-Group G y x) (is-section-left-div-Group G x y) conjugation-left-div-Group' : (x y : type-Group G) → conjugation-Group G y (left-div-Group G x y) = right-div-Group G y x conjugation-left-div-Group' x y = ( ap ( λ z → right-div-Group G z y) ( inv (associative-mul-Group G y (inv-Group G x) y))) ∙ ( is-retraction-right-div-Group G y (right-div-Group G y x)) conjugation-right-div-Group : (x y : type-Group G) → conjugation-Group' G y (right-div-Group G x y) = left-div-Group G y x conjugation-right-div-Group x y = ( associative-mul-Group G ( inv-Group G y) ( right-div-Group G x y) ( y)) ∙ ( ap (left-div-Group G y) (is-section-right-div-Group G y x)) conjugation-right-div-Group' : (x y : type-Group G) → conjugation-Group' G x (right-div-Group G x y) = left-div-Group G y x conjugation-right-div-Group' x y = ap (mul-Group' G x) (is-retraction-left-div-Group G x (inv-Group G y)) is-section-conjugation-inv-Group : (x : type-Group G) → ( conjugation-Group G x ∘ conjugation-Group G (inv-Group G x)) ~ id is-section-conjugation-inv-Group x y = ( ap ( mul-Group' G (inv-Group G x)) ( ( ap (mul-Group G x) (associative-mul-Group G _ _ _)) ∙ ( is-section-left-div-Group G x ( right-div-Group G y (inv-Group G x))))) ∙ ( is-section-right-div-Group G (inv-Group G x) y) is-retraction-conjugation-inv-Group : (x : type-Group G) → ( conjugation-Group G (inv-Group G x) ∘ conjugation-Group G x) ~ id is-retraction-conjugation-inv-Group x y = ( ap ( mul-Group' G (inv-Group G (inv-Group G x))) ( ( ap (mul-Group G (inv-Group G x)) (associative-mul-Group G _ _ _)) ∙ ( is-retraction-left-div-Group G x ( right-div-Group G y x)))) ∙ ( is-retraction-right-div-Group G (inv-Group G x) y) transpose-eq-conjugation-Group : {x y z : type-Group G} → y = conjugation-Group G (inv-Group G x) z → conjugation-Group G x y = z transpose-eq-conjugation-Group {x} {y} {z} = eq-transpose-is-section ( conjugation-Group G x) ( conjugation-Group G (inv-Group G x)) ( is-section-conjugation-inv-Group x) transpose-eq-conjugation-Group' : {x y z : type-Group G} → conjugation-Group G (inv-Group G x) y = z → y = conjugation-Group G x z transpose-eq-conjugation-Group' {x} {y} {z} = eq-transpose-is-section' ( conjugation-Group G x) ( conjugation-Group G (inv-Group G x)) ( is-section-conjugation-inv-Group x) transpose-eq-conjugation-inv-Group : {x y z : type-Group G} → y = conjugation-Group G x z → conjugation-Group G (inv-Group G x) y = z transpose-eq-conjugation-inv-Group {x} {y} {z} = eq-transpose-is-retraction ( conjugation-Group G x) ( conjugation-Group G (inv-Group G x)) ( is-retraction-conjugation-inv-Group x) transpose-eq-conjugation-inv-Group' : {x y z : type-Group G} → conjugation-Group G x y = z → y = conjugation-Group G (inv-Group G x) z transpose-eq-conjugation-inv-Group' {x} {y} {z} = eq-transpose-is-retraction' ( conjugation-Group G x) ( conjugation-Group G (inv-Group G x)) ( is-retraction-conjugation-inv-Group x)
Conjugation by x
is an automorphism of G
module _ {l : Level} (G : Group l) where conjugation-hom-Group : type-Group G → hom-Group G G pr1 (conjugation-hom-Group x) = conjugation-Group G x pr2 (conjugation-hom-Group x) = distributive-conjugation-mul-Group G x _ _ conjugation-equiv-Group : type-Group G → equiv-Group G G pr1 (conjugation-equiv-Group x) = equiv-conjugation-Group G x pr2 (conjugation-equiv-Group x) = distributive-conjugation-mul-Group G x _ _ conjugation-iso-Group : type-Group G → iso-Group G G conjugation-iso-Group x = iso-equiv-Group G G (conjugation-equiv-Group x) preserves-integer-powers-conjugation-Group : (k : ℤ) (g x : type-Group G) → conjugation-Group G g (integer-power-Group G k x) = integer-power-Group G k (conjugation-Group G g x) preserves-integer-powers-conjugation-Group k g = preserves-integer-powers-hom-Group G G (conjugation-hom-Group g) k
Any group homomorphism preserves conjugation
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) where preserves-conjugation-hom-Group : {x y : type-Group G} → map-hom-Group G H f (conjugation-Group G x y) = conjugation-Group H (map-hom-Group G H f x) (map-hom-Group G H f y) preserves-conjugation-hom-Group = ( preserves-right-div-hom-Group G H f) ∙ ( ap (mul-Group' H _) (preserves-mul-hom-Group G H f))
Recent changes
- 2024-02-23. Egbert Rijke and maybemabeline. Infinitely and finitely coherent equivalences and infinitely and finitely coherently invertible maps (#1028).
- 2024-02-19. Fredrik Bakke. Additions for coherently invertible maps (#1024).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-19. Egbert Rijke. Characteristic subgroups (#863).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).