Powers of elements in commutative monoids

Content created by Egbert Rijke, Fredrik Bakke and Gregor Perčič.

Created on 2023-09-13.
Last modified on 2023-09-26.

module group-theory.powers-of-elements-commutative-monoids where
Imports
open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.multiplication-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.identity-types
open import foundation.propositions
open import foundation.universe-levels

open import group-theory.commutative-monoids
open import group-theory.homomorphisms-commutative-monoids
open import group-theory.powers-of-elements-monoids

The power operation on a monoid is the map n x ↦ xⁿ, which is defined by iteratively multiplying x with itself n times.

Definitions

Powers of elements in commutative monoids

module _
  {l : Level} (M : Commutative-Monoid l)
  where

  power-Commutative-Monoid :
      type-Commutative-Monoid M  type-Commutative-Monoid M
  power-Commutative-Monoid = power-Monoid (monoid-Commutative-Monoid M)

The predicate of being a power of an element in a commutative monoid

We say that an element y is a power of an element x if there exists a number n such that xⁿ = y.

module _
  {l : Level} (M : Commutative-Monoid l)
  where

  is-power-of-element-prop-Commutative-Monoid :
    (x y : type-Commutative-Monoid M)  Prop l
  is-power-of-element-prop-Commutative-Monoid =
    is-power-of-element-prop-Monoid (monoid-Commutative-Monoid M)

  is-power-of-element-Commutative-Monoid :
    (x y : type-Commutative-Monoid M)  UU l
  is-power-of-element-Commutative-Monoid =
    is-power-of-element-Monoid (monoid-Commutative-Monoid M)

  is-prop-is-power-of-element-Commutative-Monoid :
    (x y : type-Commutative-Monoid M) 
    is-prop (is-power-of-element-Commutative-Monoid x y)
  is-prop-is-power-of-element-Commutative-Monoid =
    is-prop-is-power-of-element-Monoid (monoid-Commutative-Monoid M)

Properties

1ⁿ = 1

module _
  {l : Level} (M : Commutative-Monoid l)
  where

  power-unit-Commutative-Monoid :
    (n : ) 
    power-Commutative-Monoid M n (unit-Commutative-Monoid M) 
    unit-Commutative-Monoid M
  power-unit-Commutative-Monoid zero-ℕ = refl
  power-unit-Commutative-Monoid (succ-ℕ zero-ℕ) = refl
  power-unit-Commutative-Monoid (succ-ℕ (succ-ℕ n)) =
    right-unit-law-mul-Commutative-Monoid M _ 
    power-unit-Commutative-Monoid (succ-ℕ n)

xⁿ⁺¹ = xⁿx

module _
  {l : Level} (M : Commutative-Monoid l)
  where

  power-succ-Commutative-Monoid :
    (n : ) (x : type-Commutative-Monoid M) 
    power-Commutative-Monoid M (succ-ℕ n) x 
    mul-Commutative-Monoid M (power-Commutative-Monoid M n x) x
  power-succ-Commutative-Monoid =
    power-succ-Monoid (monoid-Commutative-Monoid M)

xⁿ⁺¹ = xxⁿ

module _
  {l : Level} (M : Commutative-Monoid l)
  where

  power-succ-Commutative-Monoid' :
    (n : ) (x : type-Commutative-Monoid M) 
    power-Commutative-Monoid M (succ-ℕ n) x 
    mul-Commutative-Monoid M x (power-Commutative-Monoid M n x)
  power-succ-Commutative-Monoid' =
    power-succ-Monoid' (monoid-Commutative-Monoid M)

Powers by sums of natural numbers are products of powers

module _
  {l : Level} (M : Commutative-Monoid l)
  where

  distributive-power-add-Commutative-Monoid :
    (m n : ) {x : type-Commutative-Monoid M} 
    power-Commutative-Monoid M (m +ℕ n) x 
    mul-Commutative-Monoid M
      ( power-Commutative-Monoid M m x)
      ( power-Commutative-Monoid M n x)
  distributive-power-add-Commutative-Monoid =
    distributive-power-add-Monoid (monoid-Commutative-Monoid M)

If x commutes with y, then powers distribute over the product of x and y

module _
  {l : Level} (M : Commutative-Monoid l)
  where

  distributive-power-mul-Commutative-Monoid :
    (n : ) {x y : type-Commutative-Monoid M} 
    (H : mul-Commutative-Monoid M x y  mul-Commutative-Monoid M y x) 
    power-Commutative-Monoid M n (mul-Commutative-Monoid M x y) 
    mul-Commutative-Monoid M
      ( power-Commutative-Monoid M n x)
      ( power-Commutative-Monoid M n y)
  distributive-power-mul-Commutative-Monoid =
    distributive-power-mul-Monoid (monoid-Commutative-Monoid M)

Powers by products of natural numbers are iterated powers

module _
  {l : Level} (M : Commutative-Monoid l)
  where

  power-mul-Commutative-Monoid :
    (m n : ) {x : type-Commutative-Monoid M} 
    power-Commutative-Monoid M (m *ℕ n) x 
    power-Commutative-Monoid M n (power-Commutative-Monoid M m x)
  power-mul-Commutative-Monoid =
    power-mul-Monoid (monoid-Commutative-Monoid M)

Commutative-Monoid homomorphisms preserve powers

module _
  {l1 l2 : Level} (M : Commutative-Monoid l1)
  (N : Commutative-Monoid l2) (f : hom-Commutative-Monoid M N)
  where

  preserves-powers-hom-Commutative-Monoid :
    (n : ) (x : type-Commutative-Monoid M) 
    map-hom-Commutative-Monoid M N f (power-Commutative-Monoid M n x) 
    power-Commutative-Monoid N n (map-hom-Commutative-Monoid M N f x)
  preserves-powers-hom-Commutative-Monoid =
    preserves-powers-hom-Monoid
      ( monoid-Commutative-Monoid M)
      ( monoid-Commutative-Monoid N)
      ( f)

Recent changes