Powers of elements in commutative monoids
Content created by Egbert Rijke, Fredrik Bakke and Gregor Perčič.
Created on 2023-09-13.
Last modified on 2023-09-26.
module group-theory.powers-of-elements-commutative-monoids where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.homomorphisms-commutative-monoids open import group-theory.powers-of-elements-monoids
The power operation on a monoid is the map
n x ↦ xⁿ
, which is defined by iteratively
multiplying x
with itself n
times.
Definitions
Powers of elements in commutative monoids
module _ {l : Level} (M : Commutative-Monoid l) where power-Commutative-Monoid : ℕ → type-Commutative-Monoid M → type-Commutative-Monoid M power-Commutative-Monoid = power-Monoid (monoid-Commutative-Monoid M)
The predicate of being a power of an element in a commutative monoid
We say that an element y
is a power of an element x
if there
exists a number n
such that
xⁿ = y
.
module _ {l : Level} (M : Commutative-Monoid l) where is-power-of-element-prop-Commutative-Monoid : (x y : type-Commutative-Monoid M) → Prop l is-power-of-element-prop-Commutative-Monoid = is-power-of-element-prop-Monoid (monoid-Commutative-Monoid M) is-power-of-element-Commutative-Monoid : (x y : type-Commutative-Monoid M) → UU l is-power-of-element-Commutative-Monoid = is-power-of-element-Monoid (monoid-Commutative-Monoid M) is-prop-is-power-of-element-Commutative-Monoid : (x y : type-Commutative-Monoid M) → is-prop (is-power-of-element-Commutative-Monoid x y) is-prop-is-power-of-element-Commutative-Monoid = is-prop-is-power-of-element-Monoid (monoid-Commutative-Monoid M)
Properties
1ⁿ = 1
module _ {l : Level} (M : Commutative-Monoid l) where power-unit-Commutative-Monoid : (n : ℕ) → power-Commutative-Monoid M n (unit-Commutative-Monoid M) = unit-Commutative-Monoid M power-unit-Commutative-Monoid zero-ℕ = refl power-unit-Commutative-Monoid (succ-ℕ zero-ℕ) = refl power-unit-Commutative-Monoid (succ-ℕ (succ-ℕ n)) = right-unit-law-mul-Commutative-Monoid M _ ∙ power-unit-Commutative-Monoid (succ-ℕ n)
xⁿ⁺¹ = xⁿx
module _ {l : Level} (M : Commutative-Monoid l) where power-succ-Commutative-Monoid : (n : ℕ) (x : type-Commutative-Monoid M) → power-Commutative-Monoid M (succ-ℕ n) x = mul-Commutative-Monoid M (power-Commutative-Monoid M n x) x power-succ-Commutative-Monoid = power-succ-Monoid (monoid-Commutative-Monoid M)
xⁿ⁺¹ = xxⁿ
module _ {l : Level} (M : Commutative-Monoid l) where power-succ-Commutative-Monoid' : (n : ℕ) (x : type-Commutative-Monoid M) → power-Commutative-Monoid M (succ-ℕ n) x = mul-Commutative-Monoid M x (power-Commutative-Monoid M n x) power-succ-Commutative-Monoid' = power-succ-Monoid' (monoid-Commutative-Monoid M)
Powers by sums of natural numbers are products of powers
module _ {l : Level} (M : Commutative-Monoid l) where distributive-power-add-Commutative-Monoid : (m n : ℕ) {x : type-Commutative-Monoid M} → power-Commutative-Monoid M (m +ℕ n) x = mul-Commutative-Monoid M ( power-Commutative-Monoid M m x) ( power-Commutative-Monoid M n x) distributive-power-add-Commutative-Monoid = distributive-power-add-Monoid (monoid-Commutative-Monoid M)
If x
commutes with y
, then powers distribute over the product of x
and y
module _ {l : Level} (M : Commutative-Monoid l) where distributive-power-mul-Commutative-Monoid : (n : ℕ) {x y : type-Commutative-Monoid M} → (H : mul-Commutative-Monoid M x y = mul-Commutative-Monoid M y x) → power-Commutative-Monoid M n (mul-Commutative-Monoid M x y) = mul-Commutative-Monoid M ( power-Commutative-Monoid M n x) ( power-Commutative-Monoid M n y) distributive-power-mul-Commutative-Monoid = distributive-power-mul-Monoid (monoid-Commutative-Monoid M)
Powers by products of natural numbers are iterated powers
module _ {l : Level} (M : Commutative-Monoid l) where power-mul-Commutative-Monoid : (m n : ℕ) {x : type-Commutative-Monoid M} → power-Commutative-Monoid M (m *ℕ n) x = power-Commutative-Monoid M n (power-Commutative-Monoid M m x) power-mul-Commutative-Monoid = power-mul-Monoid (monoid-Commutative-Monoid M)
Commutative-Monoid homomorphisms preserve powers
module _ {l1 l2 : Level} (M : Commutative-Monoid l1) (N : Commutative-Monoid l2) (f : hom-Commutative-Monoid M N) where preserves-powers-hom-Commutative-Monoid : (n : ℕ) (x : type-Commutative-Monoid M) → map-hom-Commutative-Monoid M N f (power-Commutative-Monoid M n x) = power-Commutative-Monoid N n (map-hom-Commutative-Monoid M N f x) preserves-powers-hom-Commutative-Monoid = preserves-powers-hom-Monoid ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N) ( f)
Recent changes
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-09-13. Egbert Rijke and Fredrik Bakke. rational commutative monoids (#763).