The local ring of Dedekind real numbers
Content created by Louis Wasserman.
Created on 2025-11-21.
Last modified on 2025-11-21.
{-# OPTIONS --lossy-unification #-} module real-numbers.local-ring-of-real-numbers where
Imports
open import commutative-algebra.local-commutative-rings open import foundation.dependent-pair-types open import foundation.functoriality-disjunction open import foundation.universe-levels open import real-numbers.addition-nonzero-real-numbers open import real-numbers.addition-real-numbers open import real-numbers.large-ring-of-real-numbers open import real-numbers.multiplicative-inverses-nonzero-real-numbers open import real-numbers.nonzero-real-numbers
Idea
The ring of real numbers is a local commutative ring.
Definition
is-local-commutative-ring-ℝ : (l : Level) → is-local-Commutative-Ring (commutative-ring-ℝ l) is-local-commutative-ring-ℝ l x y is-invertible-x+y = map-disjunction ( is-invertible-is-nonzero-ℝ x) ( is-invertible-is-nonzero-ℝ y) ( is-nonzero-either-is-nonzero-add-ℝ ( x) ( y) ( is-nonzero-is-invertible-ℝ (x +ℝ y) is-invertible-x+y)) local-commutative-ring-ℝ : (l : Level) → Local-Commutative-Ring (lsuc l) local-commutative-ring-ℝ l = ( commutative-ring-ℝ l , is-local-commutative-ring-ℝ l)
Recent changes
- 2025-11-21. Louis Wasserman. Vector spaces (#1689).