The monoid of the natural numbers with maximum

Content created by Egbert Rijke and Fredrik Bakke.

Created on 2023-03-26.
Last modified on 2023-10-22.

module elementary-number-theory.monoid-of-natural-numbers-with-maximum where
Imports
open import elementary-number-theory.equality-natural-numbers
open import elementary-number-theory.initial-segments-natural-numbers
open import elementary-number-theory.maximum-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.universe-levels

open import group-theory.commutative-monoids
open import group-theory.monoids
open import group-theory.normal-submonoids-commutative-monoids
open import group-theory.semigroups
open import group-theory.submonoids-commutative-monoids

Idea

The type of natural numbers equipped with 0 and max-ℕ forms a monoid. Normal submonoids of this monoid are initial segments of the natural numbers. Furthermore, the identity relation is a nonsaturated congruence relation on ℕ-Max.

Definition

semigroup-ℕ-Max : Semigroup lzero
pr1 semigroup-ℕ-Max = ℕ-Set
pr1 (pr2 semigroup-ℕ-Max) = max-ℕ
pr2 (pr2 semigroup-ℕ-Max) = associative-max-ℕ

monoid-ℕ-Max : Monoid lzero
pr1 monoid-ℕ-Max = semigroup-ℕ-Max
pr1 (pr2 monoid-ℕ-Max) = 0
pr1 (pr2 (pr2 monoid-ℕ-Max)) = left-unit-law-max-ℕ
pr2 (pr2 (pr2 monoid-ℕ-Max)) = right-unit-law-max-ℕ

ℕ-Max : Commutative-Monoid lzero
pr1 ℕ-Max = monoid-ℕ-Max
pr2 ℕ-Max = commutative-max-ℕ

Properties

Normal Submonoids of ℕ-Max are initial segments of the natural numbers

module _
  {l : Level} (N : Normal-Commutative-Submonoid l ℕ-Max)
  where

  is-initial-segment-Normal-Commutative-Submonoid-ℕ-Max :
    is-initial-segment-subset-ℕ
      ( subset-Normal-Commutative-Submonoid ℕ-Max N)
  is-initial-segment-Normal-Commutative-Submonoid-ℕ-Max x H =
      ( is-normal-Normal-Commutative-Submonoid ℕ-Max N x
        ( succ-ℕ x)
        ( H))
      ( is-closed-under-eq-Normal-Commutative-Submonoid'
        ( ℕ-Max)
        ( N)
        ( H)
        ( right-successor-diagonal-law-max-ℕ x))

  initial-segment-Normal-Submonoid-ℕ-Max : initial-segment-ℕ l
  pr1 initial-segment-Normal-Submonoid-ℕ-Max =
    subset-Normal-Commutative-Submonoid ℕ-Max N
  pr2 initial-segment-Normal-Submonoid-ℕ-Max =
    is-initial-segment-Normal-Commutative-Submonoid-ℕ-Max

Initial segments of the natural numbers are normal submonoids of ℕ-Max

submonoid-initial-segment-ℕ-Max :
  {l : Level} (I : initial-segment-ℕ l) (i0 : is-in-initial-segment-ℕ I 0) 
  Commutative-Submonoid l ℕ-Max
pr1 (submonoid-initial-segment-ℕ-Max I i0) = subset-initial-segment-ℕ I
pr1 (pr2 (submonoid-initial-segment-ℕ-Max I i0)) = i0
pr2 (pr2 (submonoid-initial-segment-ℕ-Max I i0)) = max-initial-segment-ℕ I

is-normal-submonoid-initial-segment-ℕ-Max :
  {l : Level} (I : initial-segment-ℕ l) (i0 : is-in-initial-segment-ℕ I 0) 
  is-normal-Commutative-Submonoid
    ℕ-Max
    (submonoid-initial-segment-ℕ-Max I i0)
is-normal-submonoid-initial-segment-ℕ-Max I i0 u zero-ℕ H K =
  is-closed-under-eq-Commutative-Submonoid
    ( ℕ-Max)
    ( submonoid-initial-segment-ℕ-Max I i0)
    ( K)
    ( right-unit-law-max-ℕ u)
is-normal-submonoid-initial-segment-ℕ-Max I i0 zero-ℕ (succ-ℕ x) H K = i0
is-normal-submonoid-initial-segment-ℕ-Max I i0 (succ-ℕ u) (succ-ℕ x) H K =
  is-normal-submonoid-initial-segment-ℕ-Max
    ( shift-initial-segment-ℕ I)
    ( contains-one-initial-segment-ℕ I (max-ℕ u x) K)
    ( u)
    ( x)
    ( H)
    ( K)

Recent changes