Function H-spaces
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-13.
Last modified on 2023-09-15.
module structured-types.function-h-spaces where
Imports
open import foundation.identity-types open import foundation.unital-binary-operations open import foundation.universe-levels open import structured-types.dependent-products-h-spaces open import structured-types.h-spaces open import structured-types.pointed-types
Idea
Given a H-space M
and a type I
, the
function H-space M^I
consists of functions from I
to the underlying type
of M
. Every component of the structure is given pointwise.
Definition
module _ {l1 l2 : Level} (I : UU l1) (M : H-Space l2) where function-H-Space : H-Space (l1 ⊔ l2) function-H-Space = Π-H-Space I (λ _ → M) pointed-type-function-H-Space : Pointed-Type (l1 ⊔ l2) pointed-type-function-H-Space = pointed-type-H-Space function-H-Space type-function-H-Space : UU (l1 ⊔ l2) type-function-H-Space = type-H-Space function-H-Space unit-function-H-Space : type-function-H-Space unit-function-H-Space = unit-H-Space function-H-Space mul-function-H-Space : type-function-H-Space → type-function-H-Space → type-function-H-Space mul-function-H-Space = mul-H-Space function-H-Space left-unit-law-mul-function-H-Space : (f : type-function-H-Space) → mul-function-H-Space unit-function-H-Space f = f left-unit-law-mul-function-H-Space = left-unit-law-mul-H-Space function-H-Space right-unit-law-mul-function-H-Space : (f : type-function-H-Space) → mul-function-H-Space f unit-function-H-Space = f right-unit-law-mul-function-H-Space = right-unit-law-mul-H-Space function-H-Space is-unital-mul-function-H-Space : is-unital mul-function-H-Space is-unital-mul-function-H-Space = is-unital-mul-H-Space function-H-Space coh-unit-laws-mul-function-H-Space : coh-unit-laws ( mul-function-H-Space) ( unit-function-H-Space) ( left-unit-law-mul-function-H-Space) ( right-unit-law-mul-function-H-Space) coh-unit-laws-mul-function-H-Space = coh-unit-laws-mul-H-Space function-H-Space coherent-unit-laws-mul-function-H-Space : coherent-unit-laws ( mul-function-H-Space) ( unit-function-H-Space) coherent-unit-laws-mul-function-H-Space = coherent-unit-laws-mul-H-Space function-H-Space is-coherently-unital-mul-function-H-Space : is-coherently-unital mul-function-H-Space is-coherently-unital-mul-function-H-Space = is-coherently-unital-mul-H-Space function-H-Space coherent-unital-mul-function-H-Space : coherent-unital-mul-Pointed-Type pointed-type-function-H-Space coherent-unital-mul-function-H-Space = coherent-unital-mul-H-Space function-H-Space
Recent changes
- 2023-09-15. Egbert Rijke. update contributors, remove unused imports (#772).
- 2023-09-13. Fredrik Bakke and Egbert Rijke. Refactor structured monoids (#761).