The precategory of commutative semirings
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-05-06.
Last modified on 2024-03-11.
module commutative-algebra.precategory-of-commutative-semirings where
Imports
open import category-theory.full-large-subprecategories open import category-theory.large-precategories open import category-theory.precategories open import commutative-algebra.commutative-semirings open import foundation.universe-levels open import ring-theory.precategory-of-semirings
Idea
The precategory of commutative semirings¶ consists of commutative semirings and homomorphisms of semirings.
Definitions
The precategory of commutative semirings as a full subprecategory of semirings
Commutative-Semiring-Full-Large-Precategory : Full-Large-Subprecategory (λ l → l) Semiring-Large-Precategory Commutative-Semiring-Full-Large-Precategory = is-commutative-prop-Semiring
The large precategory of commutative semirings
Commutative-Semiring-Large-Precategory : Large-Precategory lsuc (_⊔_) Commutative-Semiring-Large-Precategory = large-precategory-Full-Large-Subprecategory ( Semiring-Large-Precategory) ( Commutative-Semiring-Full-Large-Precategory)
The precategory of commutative semirings of universe level l
Commutative-Semiring-Precategory : (l : Level) → Precategory (lsuc l) l Commutative-Semiring-Precategory = precategory-Large-Precategory Commutative-Semiring-Large-Precategory
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-05-06. Egbert Rijke. Collecting some easily defined precategories (#598).