Predicates on lists
Content created by Fredrik Bakke and Victor Blanchi.
Created on 2023-05-10.
Last modified on 2024-02-06.
module lists.predicates-on-lists where
Imports
open import foundation.propositions open import foundation.unit-type open import foundation.universe-levels open import lists.lists
Definitions
For all
module _ {l1 l2 : Level} (X : UU l1) (P : X → Prop l2) where for-all-list-Prop : (l : list X) → Prop l2 for-all-list-Prop nil = raise-unit-Prop l2 for-all-list-Prop (cons x l) = product-Prop (P x) (for-all-list-Prop l) for-all-list : (l : list X) → UU l2 for-all-list l = type-Prop (for-all-list-Prop l) is-prop-for-all-list : (l : list X) → is-prop (for-all-list l) is-prop-for-all-list l = is-prop-type-Prop (for-all-list-Prop l)
Recent changes
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-05-13. Fredrik Bakke. Remove unused imports and fix some unaddressed comments (#621).
- 2023-05-13. Fredrik Bakke. Refactor to use infix binary operators for arithmetic (#620).
- 2023-05-10. Victor Blanchi. Fundamental theorem of arithmetic (#612).