Pullbacks of subsemigroups
Content created by Egbert Rijke.
Created on 2023-11-24.
Last modified on 2024-04-25.
module group-theory.pullbacks-subsemigroups where
Imports
open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.powersets open import foundation.pullbacks-subtypes open import foundation.universe-levels open import group-theory.homomorphisms-semigroups open import group-theory.semigroups open import group-theory.subsemigroups open import group-theory.subsets-semigroups open import order-theory.commuting-squares-of-order-preserving-maps-large-posets open import order-theory.order-preserving-maps-large-posets open import order-theory.order-preserving-maps-large-preorders open import order-theory.similarity-of-order-preserving-maps-large-posets
Idea
Given a semigroup homomorphism
f : G → H
into a semigroup H
equipped with a
subsemigroup K ≤ H
, the pullback
pullback f K
of K
along f
is defined by substituting f
in K
. In other
words, it is the subsemigroup pullback f K
of G
consisting of the elements
x : G
such that f x ∈ K
.
Definitions
The pullback of a subsemigroup along a semigroup homomorphism
module _ {l1 l2 l3 : Level} (G : Semigroup l1) (H : Semigroup l2) (f : hom-Semigroup G H) (K : Subsemigroup l3 H) where subset-pullback-Subsemigroup : subset-Semigroup l3 G subset-pullback-Subsemigroup = subset-Subsemigroup H K ∘ map-hom-Semigroup G H f is-closed-under-multiplication-pullback-Subsemigroup : is-closed-under-multiplication-subset-Semigroup G subset-pullback-Subsemigroup is-closed-under-multiplication-pullback-Subsemigroup p q = is-closed-under-eq-Subsemigroup' H K ( is-closed-under-multiplication-Subsemigroup H K p q) ( preserves-mul-hom-Semigroup G H f) pullback-Subsemigroup : Subsemigroup l3 G pr1 pullback-Subsemigroup = subset-pullback-Subsemigroup pr2 pullback-Subsemigroup = is-closed-under-multiplication-pullback-Subsemigroup is-in-pullback-Subsemigroup : type-Semigroup G → UU l3 is-in-pullback-Subsemigroup = is-in-Subsemigroup G pullback-Subsemigroup is-closed-under-eq-pullback-Subsemigroup : {x y : type-Semigroup G} → is-in-pullback-Subsemigroup x → x = y → is-in-pullback-Subsemigroup y is-closed-under-eq-pullback-Subsemigroup = is-closed-under-eq-Subsemigroup G pullback-Subsemigroup is-closed-under-eq-pullback-Subsemigroup' : {x y : type-Semigroup G} → is-in-pullback-Subsemigroup y → x = y → is-in-pullback-Subsemigroup x is-closed-under-eq-pullback-Subsemigroup' = is-closed-under-eq-Subsemigroup' G pullback-Subsemigroup
The order preserving operation `pullback-Subsemigroup
module _ {l1 l2 : Level} (G : Semigroup l1) (H : Semigroup l2) (f : hom-Semigroup G H) where preserves-order-pullback-Subsemigroup : {l3 l4 : Level} (S : Subsemigroup l3 H) (T : Subsemigroup l4 H) → leq-Subsemigroup H S T → leq-Subsemigroup G ( pullback-Subsemigroup G H f S) ( pullback-Subsemigroup G H f T) preserves-order-pullback-Subsemigroup S T = preserves-order-pullback-subtype ( map-hom-Semigroup G H f) ( subset-Subsemigroup H S) ( subset-Subsemigroup H T) pullback-hom-large-poset-Subsemigroup : hom-Large-Poset ( λ l → l) ( Subsemigroup-Large-Poset H) ( Subsemigroup-Large-Poset G) map-hom-Large-Preorder pullback-hom-large-poset-Subsemigroup = pullback-Subsemigroup G H f preserves-order-hom-Large-Preorder pullback-hom-large-poset-Subsemigroup = preserves-order-pullback-Subsemigroup
Properties
The pullback operation commutes with the underlying subtype operation
The square
pullback f
Subsemigroup H ----------------> Subsemigroup G
| |
K ↦ UK | | K ↦ UK
| |
∨ ∨
subset-Semigroup H ------------> subset-Semigroup G
pullback f
of order preserving maps commutes by reflexivity.
module _ {l1 l2 : Level} (G : Semigroup l1) (H : Semigroup l2) (f : hom-Semigroup G H) where coherence-square-pullback-subset-Subsemigroup : coherence-square-hom-Large-Poset ( Subsemigroup-Large-Poset H) ( powerset-Large-Poset (type-Semigroup H)) ( Subsemigroup-Large-Poset G) ( powerset-Large-Poset (type-Semigroup G)) ( pullback-hom-large-poset-Subsemigroup G H f) ( subset-subsemigroup-hom-large-poset-Semigroup H) ( subset-subsemigroup-hom-large-poset-Semigroup G) ( pullback-subtype-hom-Large-Poset (map-hom-Semigroup G H f)) coherence-square-pullback-subset-Subsemigroup = refl-sim-hom-Large-Poset ( Subsemigroup-Large-Poset H) ( powerset-Large-Poset (type-Semigroup G)) ( comp-hom-Large-Poset ( Subsemigroup-Large-Poset H) ( Subsemigroup-Large-Poset G) ( powerset-Large-Poset (type-Semigroup G)) ( subset-subsemigroup-hom-large-poset-Semigroup G) ( pullback-hom-large-poset-Subsemigroup G H f))
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2023-11-24. Egbert Rijke. Abelianization (#877).