Functoriality of localizations at global subuniverses
Content created by Fredrik Bakke.
Created on 2025-02-03.
Last modified on 2025-02-03.
module orthogonal-factorization-systems.functoriality-localizations-at-global-subuniverses where
Imports
open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.commuting-squares-of-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.extensions-types-global-subuniverses open import foundation.extensions-types-subuniverses open import foundation.function-extensionality open import foundation.function-types open import foundation.global-subuniverses open import foundation.homotopies open import foundation.homotopy-induction open import foundation.identity-types open import foundation.precomposition-functions open import foundation.propositions open import foundation.retractions open import foundation.retracts-of-maps open import foundation.retracts-of-types open import foundation.subuniverses open import foundation.unit-type open import foundation.universe-levels open import orthogonal-factorization-systems.localizations-at-global-subuniverses open import orthogonal-factorization-systems.modal-induction open import orthogonal-factorization-systems.modal-operators open import orthogonal-factorization-systems.modal-subuniverse-induction open import orthogonal-factorization-systems.types-local-at-maps open import orthogonal-factorization-systems.universal-property-localizations-at-global-subuniverses
Idea
Given a global subuniverse 𝒫
, and two
𝒫
-localizations η_X : X → LX
and η_Y : Y → LY
then for every map
f : X → Y
there is a map Lf : LX → LY
such that the square
f
X --------> Y
| |
| |
∨ Lf ∨
LX ------> LY
commutes. This construction preserves identity functions and composition of maps
L(g ∘ f) ~ Lg ∘ Lf and L(id) ~ id
Definitions
The functorial action on maps of types with localizations
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 l3 l4 : Level} {X : UU l1} {Y : UU l2} (LX : localization-global-subuniverse 𝒫 l3 X) (LY : extension-type-global-subuniverse 𝒫 l4 Y) where map-localization-global-subuniverse' : (X → Y) → type-localization-global-subuniverse LX → type-extension-type-global-subuniverse 𝒫 LY map-localization-global-subuniverse' f = map-inv-is-equiv ( up-localization-global-subuniverse LX ( type-global-subuniverse-extension-type-global-subuniverse 𝒫 LY)) ( inclusion-extension-type-global-subuniverse 𝒫 LY ∘ f) eq-naturality-map-localization-global-subuniverse' : (f : X → Y) → map-localization-global-subuniverse' f ∘ unit-localization-global-subuniverse LX = inclusion-extension-type-global-subuniverse 𝒫 LY ∘ f eq-naturality-map-localization-global-subuniverse' f = is-section-map-inv-is-equiv ( up-localization-global-subuniverse LX ( type-global-subuniverse-extension-type-global-subuniverse 𝒫 LY)) ( inclusion-extension-type-global-subuniverse 𝒫 LY ∘ f) naturality-map-localization-global-subuniverse' : (f : X → Y) → coherence-square-maps ( f) ( unit-localization-global-subuniverse LX) ( inclusion-extension-type-global-subuniverse 𝒫 LY) ( map-localization-global-subuniverse' f) naturality-map-localization-global-subuniverse' f = htpy-eq (eq-naturality-map-localization-global-subuniverse' f) module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 l3 l4 : Level} {X : UU l1} {Y : UU l2} (LX : localization-global-subuniverse 𝒫 l3 X) (LY : localization-global-subuniverse 𝒫 l4 Y) where map-localization-global-subuniverse : (X → Y) → type-localization-global-subuniverse LX → type-localization-global-subuniverse LY map-localization-global-subuniverse = map-localization-global-subuniverse' 𝒫 LX ( reflection-localization-global-subuniverse LY) eq-naturality-map-localization-global-subuniverse : (f : X → Y) → map-localization-global-subuniverse f ∘ unit-localization-global-subuniverse LX = unit-localization-global-subuniverse LY ∘ f eq-naturality-map-localization-global-subuniverse = eq-naturality-map-localization-global-subuniverse' 𝒫 LX ( reflection-localization-global-subuniverse LY) naturality-map-localization-global-subuniverse : (f : X → Y) → coherence-square-maps ( f) ( unit-localization-global-subuniverse LX) ( unit-localization-global-subuniverse LY) ( map-localization-global-subuniverse f) naturality-map-localization-global-subuniverse = naturality-map-localization-global-subuniverse' 𝒫 LX ( reflection-localization-global-subuniverse LY)
The functorial action on maps of types with localizations preserves homotopies
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 l3 l4 : Level} {X : UU l1} {Y : UU l2} (LX : localization-global-subuniverse 𝒫 l3 X) (LY : extension-type-global-subuniverse 𝒫 l4 Y) where abstract preserves-htpy-map-localization-global-subuniverse' : {f g : X → Y} → f ~ g → map-localization-global-subuniverse' 𝒫 LX LY f ~ map-localization-global-subuniverse' 𝒫 LX LY g preserves-htpy-map-localization-global-subuniverse' {f} = ind-htpy f ( λ g _ → map-localization-global-subuniverse' 𝒫 LX LY f ~ map-localization-global-subuniverse' 𝒫 LX LY g) ( refl-htpy) module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 l3 l4 : Level} {X : UU l1} {Y : UU l2} (LX : localization-global-subuniverse 𝒫 l3 X) (LY : localization-global-subuniverse 𝒫 l4 Y) where preserves-htpy-map-localization-global-subuniverse : {f g : X → Y} → f ~ g → map-localization-global-subuniverse 𝒫 LX LY f ~ map-localization-global-subuniverse 𝒫 LX LY g preserves-htpy-map-localization-global-subuniverse = preserves-htpy-map-localization-global-subuniverse' 𝒫 LX ( reflection-localization-global-subuniverse LY)
Properties
The functorial action on maps of types with localizations preserves identity functions
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 : Level} {X : UU l1} (LX : localization-global-subuniverse 𝒫 l2 X) where eq-preserves-id-map-localization-global-subuniverse : map-localization-global-subuniverse 𝒫 LX LX id = id eq-preserves-id-map-localization-global-subuniverse = is-retraction-map-inv-is-equiv ( up-localization-global-subuniverse LX ( type-global-subuniverse-localization-global-subuniverse LX)) ( id) preserves-id-map-localization-global-subuniverse : map-localization-global-subuniverse 𝒫 LX LX id ~ id preserves-id-map-localization-global-subuniverse = htpy-eq eq-preserves-id-map-localization-global-subuniverse
The functorial action on maps of types with localizations preserves composition
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 l3 l4 l5 l6 : Level} {X : UU l1} {Y : UU l2} {Z : UU l3} (LX : localization-global-subuniverse 𝒫 l4 X) (LY : localization-global-subuniverse 𝒫 l5 Y) (LZ : extension-type-global-subuniverse 𝒫 l6 Z) (g : Y → Z) (f : X → Y) where eq-preserves-comp-map-localization-global-subuniverse' : map-localization-global-subuniverse' 𝒫 LX LZ (g ∘ f) = map-localization-global-subuniverse' 𝒫 LY LZ g ∘ map-localization-global-subuniverse 𝒫 LX LY f eq-preserves-comp-map-localization-global-subuniverse' = equational-reasoning map-localization-global-subuniverse' 𝒫 LX LZ (g ∘ f) = ( map-inv-is-equiv ( up-localization-global-subuniverse LX ( type-global-subuniverse-extension-type-global-subuniverse 𝒫 LZ)) ( map-localization-global-subuniverse' 𝒫 LY LZ g ∘ map-localization-global-subuniverse 𝒫 LX LY f ∘ unit-localization-global-subuniverse LX)) by ap ( map-inv-is-equiv ( up-localization-global-subuniverse LX ( type-global-subuniverse-extension-type-global-subuniverse 𝒫 LZ))) ( inv ( ap ( map-localization-global-subuniverse' 𝒫 LY LZ g ∘_) ( eq-naturality-map-localization-global-subuniverse 𝒫 LX LY f) ∙ ap ( _∘ f) ( eq-naturality-map-localization-global-subuniverse' 𝒫 LY LZ g))) = ( map-localization-global-subuniverse' 𝒫 LY LZ g ∘ map-localization-global-subuniverse 𝒫 LX LY f) by ( is-retraction-map-inv-is-equiv ( up-localization-global-subuniverse LX ( type-global-subuniverse-extension-type-global-subuniverse 𝒫 LZ)) ( map-localization-global-subuniverse' 𝒫 LY LZ g ∘ map-localization-global-subuniverse 𝒫 LX LY f)) preserves-comp-map-localization-global-subuniverse' : map-localization-global-subuniverse' 𝒫 LX LZ (g ∘ f) ~ map-localization-global-subuniverse' 𝒫 LY LZ g ∘ map-localization-global-subuniverse 𝒫 LX LY f preserves-comp-map-localization-global-subuniverse' = htpy-eq eq-preserves-comp-map-localization-global-subuniverse' module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 l3 l4 l5 l6 : Level} {X : UU l1} {Y : UU l2} {Z : UU l3} (LX : localization-global-subuniverse 𝒫 l4 X) (LY : localization-global-subuniverse 𝒫 l5 Y) (LZ : localization-global-subuniverse 𝒫 l6 Z) (g : Y → Z) (f : X → Y) where eq-preserves-comp-map-localization-global-subuniverse : map-localization-global-subuniverse 𝒫 LX LZ (g ∘ f) = map-localization-global-subuniverse 𝒫 LY LZ g ∘ map-localization-global-subuniverse 𝒫 LX LY f eq-preserves-comp-map-localization-global-subuniverse = eq-preserves-comp-map-localization-global-subuniverse' 𝒫 LX LY (reflection-localization-global-subuniverse LZ) g f preserves-comp-map-localization-global-subuniverse : map-localization-global-subuniverse 𝒫 LX LZ (g ∘ f) ~ map-localization-global-subuniverse 𝒫 LY LZ g ∘ map-localization-global-subuniverse 𝒫 LX LY f preserves-comp-map-localization-global-subuniverse = preserves-comp-map-localization-global-subuniverse' 𝒫 LX LY (reflection-localization-global-subuniverse LZ) g f
Localizations are closed under retracts
Proof. Let X
and Y
be types with localizations in a global subuniverse
𝒫
. Moreover, assume X
is a retract of Y
and that Y ∈ 𝒫
. then applying
the functoriality of localizations at global subuniverses we have a retract of
maps
i r
X --------> Y --------> X
| | |
| | |
∨ Li ∨ Lr ∨
LX -------> LY ------> LX
since the middle vertical map is an equivalence, so is the outer vertical map.
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 l3 l4 : Level} {X : UU l1} {Y : UU l2} (LX : localization-global-subuniverse 𝒫 l3 X) (LY : localization-global-subuniverse 𝒫 l4 Y) (R : X retract-of Y) where inclusion-retract-localization-global-subuniverse : type-localization-global-subuniverse LX → type-localization-global-subuniverse LY inclusion-retract-localization-global-subuniverse = map-localization-global-subuniverse 𝒫 LX LY (inclusion-retract R) map-retraction-retract-localization-global-subuniverse : type-localization-global-subuniverse LY → type-localization-global-subuniverse LX map-retraction-retract-localization-global-subuniverse = map-localization-global-subuniverse 𝒫 LY LX (map-retraction-retract R) is-retraction-map-retraction-retract-localization-global-subuniverse : is-retraction ( inclusion-retract-localization-global-subuniverse) ( map-retraction-retract-localization-global-subuniverse) is-retraction-map-retraction-retract-localization-global-subuniverse = inv-htpy ( preserves-comp-map-localization-global-subuniverse 𝒫 LX LY LX ( map-retraction-retract R) ( inclusion-retract R)) ∙h preserves-htpy-map-localization-global-subuniverse 𝒫 LX LX ( is-retraction-map-retraction-retract R) ∙h preserves-id-map-localization-global-subuniverse 𝒫 LX retraction-retract-localization-global-subuniverse : retraction ( inclusion-retract-localization-global-subuniverse) retraction-retract-localization-global-subuniverse = map-retraction-retract-localization-global-subuniverse , is-retraction-map-retraction-retract-localization-global-subuniverse retract-localization-global-subuniverse : ( type-localization-global-subuniverse LX) retract-of ( type-localization-global-subuniverse LY) retract-localization-global-subuniverse = ( map-localization-global-subuniverse 𝒫 LX LY (inclusion-retract R)) , ( retraction-retract-localization-global-subuniverse) is-in-global-subuniverse-retract-localization-global-subuniverse : is-in-global-subuniverse 𝒫 Y → is-in-global-subuniverse 𝒫 X is-in-global-subuniverse-retract-localization-global-subuniverse H = is-in-global-subuniverse-is-equiv-unit-universal-property-localization-global-subuniverse ( 𝒫) ( reflection-localization-global-subuniverse LX) ( up-localization-global-subuniverse LX) ( is-equiv-retract-map-is-equiv' ( unit-localization-global-subuniverse LX) ( unit-localization-global-subuniverse LY) ( R) ( retract-localization-global-subuniverse) ( naturality-map-localization-global-subuniverse 𝒫 LX LY ( inclusion-retract R)) ( naturality-map-localization-global-subuniverse 𝒫 LY LX ( map-retraction-retract R)) ( is-equiv-unit-is-in-global-subuniverse-universal-property-localization-global-subuniverse ( 𝒫) ( reflection-localization-global-subuniverse LY) ( up-localization-global-subuniverse LY) ( H)))
References
- [CORS20]
- J. Daniel Christensen, Morgan Opie, Egbert Rijke, and Luis Scoccola. Localization in Homotopy Type Theory. Higher Structures, 4(1):1–32, 02 2020. URL: http://articles.math.cas.cz/10.21136/HS.2020.01, arXiv:1807.04155, doi:10.21136/HS.2020.01.
- [Rij19]
- Egbert Rijke. Classifying Types. PhD thesis, Carnegie Mellon University, 06 2019. arXiv:1906.09435.
Recent changes
- 2025-02-03. Fredrik Bakke. Reflective global subuniverses (#1228).