Prespectra
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-05-16.
Last modified on 2024-03-12.
module synthetic-homotopy-theory.prespectra where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import structured-types.pointed-maps open import structured-types.pointed-types open import synthetic-homotopy-theory.loop-spaces open import synthetic-homotopy-theory.suspensions-of-pointed-types open import synthetic-homotopy-theory.suspensions-of-types open import synthetic-homotopy-theory.universal-property-suspensions-of-pointed-types
Idea
A prespectrum is a sequence of
pointed types Aₙ
equipped with
pointed maps
ε : Aₙ →∗ ΩAₙ₊₁
for each n : ℕ
, called the adjoint structure maps of the prespectrum.
By the
loop-suspension adjunction,
specifying structure maps Aₙ →∗ Ω Aₙ₊₁
is
equivalent to specifying their adjoint maps
ΣAₙ → Aₙ₊₁.
Definition
Prespectrum : (l : Level) → UU (lsuc l) Prespectrum l = Σ (ℕ → Pointed-Type l) (λ A → (n : ℕ) → A n →∗ Ω (A (succ-ℕ n))) module _ {l : Level} (A : Prespectrum l) (n : ℕ) where pointed-type-Prespectrum : Pointed-Type l pointed-type-Prespectrum = pr1 A n type-Prespectrum : UU l type-Prespectrum = type-Pointed-Type pointed-type-Prespectrum point-Prespectrum : type-Prespectrum point-Prespectrum = point-Pointed-Type pointed-type-Prespectrum module _ {l : Level} (A : Prespectrum l) (n : ℕ) where pointed-adjoint-structure-map-Prespectrum : pointed-type-Prespectrum A n →∗ Ω (pointed-type-Prespectrum A (succ-ℕ n)) pointed-adjoint-structure-map-Prespectrum = pr2 A n adjoint-structure-map-Prespectrum : type-Prespectrum A n → type-Ω (pointed-type-Prespectrum A (succ-ℕ n)) adjoint-structure-map-Prespectrum = map-pointed-map pointed-adjoint-structure-map-Prespectrum preserves-point-adjoint-structure-map-Prespectrum : adjoint-structure-map-Prespectrum (point-Prespectrum A n) = refl-Ω (pointed-type-Prespectrum A (succ-ℕ n)) preserves-point-adjoint-structure-map-Prespectrum = preserves-point-pointed-map pointed-adjoint-structure-map-Prespectrum
The structure maps of a prespectrum
module _ {l : Level} (A : Prespectrum l) (n : ℕ) where pointed-structure-map-Prespectrum : suspension-Pointed-Type (pointed-type-Prespectrum A n) →∗ pointed-type-Prespectrum A (succ-ℕ n) pointed-structure-map-Prespectrum = inv-transpose-suspension-loop-adjunction ( pointed-type-Prespectrum A n) ( pointed-type-Prespectrum A (succ-ℕ n)) ( pointed-adjoint-structure-map-Prespectrum A n) structure-map-Prespectrum : suspension (type-Prespectrum A n) → type-Prespectrum A (succ-ℕ n) structure-map-Prespectrum = map-pointed-map pointed-structure-map-Prespectrum preserves-point-structure-map-Prespectrum : structure-map-Prespectrum north-suspension = point-Prespectrum A (succ-ℕ n) preserves-point-structure-map-Prespectrum = preserves-point-pointed-map pointed-structure-map-Prespectrum
References
- [May99]
- J. P. May. A Concise Course in Algebraic Topology. University of Chicago Press, 09 1999. ISBN 978-0-226-51183-2. URL: https://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf.
Recent changes
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2023-10-16. Fredrik Bakke and Egbert Rijke. Sequential limits (#839).
- 2023-10-12. Fredrik Bakke. Define suspension prespectra and maps of prespectra (#833).
- 2023-05-03. Fredrik Bakke. Define the smash product of pointed types and refactor pointed types (#583).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).