Prespectra

Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.

Created on 2022-05-16.
Last modified on 2024-03-12.

module synthetic-homotopy-theory.prespectra where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.universe-levels

open import structured-types.pointed-maps
open import structured-types.pointed-types

open import synthetic-homotopy-theory.loop-spaces
open import synthetic-homotopy-theory.suspensions-of-pointed-types
open import synthetic-homotopy-theory.suspensions-of-types
open import synthetic-homotopy-theory.universal-property-suspensions-of-pointed-types

Idea

A prespectrum is a sequence of pointed types Aₙ equipped with pointed maps

  ε : Aₙ →∗ ΩAₙ₊₁

for each n : ℕ, called the adjoint structure maps of the prespectrum.

By the loop-suspension adjunction, specifying structure maps Aₙ →∗ Ω Aₙ₊₁ is equivalent to specifying their adjoint maps

  ΣAₙ → Aₙ₊₁.

Definition

Prespectrum : (l : Level)  UU (lsuc l)
Prespectrum l =
  Σ (  Pointed-Type l)  A  (n : )  A n →∗ Ω (A (succ-ℕ n)))

module _
  {l : Level} (A : Prespectrum l) (n : )
  where

  pointed-type-Prespectrum : Pointed-Type l
  pointed-type-Prespectrum = pr1 A n

  type-Prespectrum : UU l
  type-Prespectrum = type-Pointed-Type pointed-type-Prespectrum

  point-Prespectrum : type-Prespectrum
  point-Prespectrum = point-Pointed-Type pointed-type-Prespectrum

module _
  {l : Level} (A : Prespectrum l) (n : )
  where

  pointed-adjoint-structure-map-Prespectrum :
    pointed-type-Prespectrum A n →∗ Ω (pointed-type-Prespectrum A (succ-ℕ n))
  pointed-adjoint-structure-map-Prespectrum = pr2 A n

  adjoint-structure-map-Prespectrum :
    type-Prespectrum A n  type-Ω (pointed-type-Prespectrum A (succ-ℕ n))
  adjoint-structure-map-Prespectrum =
    map-pointed-map pointed-adjoint-structure-map-Prespectrum

  preserves-point-adjoint-structure-map-Prespectrum :
    adjoint-structure-map-Prespectrum (point-Prespectrum A n) 
    refl-Ω (pointed-type-Prespectrum A (succ-ℕ n))
  preserves-point-adjoint-structure-map-Prespectrum =
    preserves-point-pointed-map pointed-adjoint-structure-map-Prespectrum

The structure maps of a prespectrum

module _
  {l : Level} (A : Prespectrum l) (n : )
  where

  pointed-structure-map-Prespectrum :
    suspension-Pointed-Type (pointed-type-Prespectrum A n) →∗
    pointed-type-Prespectrum A (succ-ℕ n)
  pointed-structure-map-Prespectrum =
    inv-transpose-suspension-loop-adjunction
      ( pointed-type-Prespectrum A n)
      ( pointed-type-Prespectrum A (succ-ℕ n))
      ( pointed-adjoint-structure-map-Prespectrum A n)

  structure-map-Prespectrum :
    suspension (type-Prespectrum A n)  type-Prespectrum A (succ-ℕ n)
  structure-map-Prespectrum = map-pointed-map pointed-structure-map-Prespectrum

  preserves-point-structure-map-Prespectrum :
    structure-map-Prespectrum north-suspension  point-Prespectrum A (succ-ℕ n)
  preserves-point-structure-map-Prespectrum =
    preserves-point-pointed-map pointed-structure-map-Prespectrum

References

[May99]
J. P. May. A Concise Course in Algebraic Topology. University of Chicago Press, 09 1999. ISBN 978-0-226-51183-2. URL: https://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf.

Recent changes