The action on identifications of functions
Content created by Fredrik Bakke, Egbert Rijke and Vojtěch Štěpančík.
Created on 2023-06-10.
Last modified on 2024-04-11.
module foundation.action-on-identifications-functions where
Imports
open import foundation.universe-levels open import foundation-core.constant-maps open import foundation-core.function-types open import foundation-core.identity-types
Idea
Any function f : A → B
preserves
identifications, in the sense that it maps
identifications p : x = y
in A
to an identification ap f p : f x = f y
in B
. This action on identifications can be thought of as the functoriality of
identity types.
Definition
The functorial action of functions on identity types
ap : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) {x y : A} → x = y → (f x) = (f y) ap f refl = refl
Properties
The identity function acts trivially on identifications
ap-id : {l : Level} {A : UU l} {x y : A} (p : x = y) → (ap id p) = p ap-id refl = refl
The action on identifications of a composite function is the composite of the actions
ap-comp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (g : B → C) (f : A → B) {x y : A} (p : x = y) → (ap (g ∘ f) p) = ((ap g ∘ ap f) p) ap-comp g f refl = refl ap-comp-assoc : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (h : C → D) (g : B → C) (f : A → B) {x y : A} (p : x = y) → ap (h ∘ g) (ap f p) = ap h (ap (g ∘ f) p) ap-comp-assoc h g f refl = refl
The action on identifications of any map preserves refl
ap-refl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (x : A) → (ap f (refl {x = x})) = refl ap-refl f x = refl
The action on identifications of any map preserves concatenation of identifications
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where ap-concat : {x y z : A} (p : x = y) (q : y = z) → ap f (p ∙ q) = ap f p ∙ ap f q ap-concat refl q = refl compute-right-refl-ap-concat : {x y : A} (p : x = y) → ap-concat p refl = ap (ap f) right-unit ∙ inv right-unit compute-right-refl-ap-concat refl = refl
The action on identifications of any map preserves inverses
ap-inv : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) {x y : A} (p : x = y) → ap f (inv p) = inv (ap f p) ap-inv f refl = refl
The action on identifications of a constant map is constant
ap-const : {l1 l2 : Level} {A : UU l1} {B : UU l2} (b : B) {x y : A} (p : x = y) → (ap (const A b) p) = refl ap-const b refl = refl
See also
- Action of functions on higher identifications.
- Action of binary functions on identifications.
- Action of dependent functions on identifications.
Recent changes
- 2024-04-11. Fredrik Bakke. Refactor diagonals (#1096).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2023-12-05. Vojtěch Štěpančík. Functoriality of sequential colimits (#919).
- 2023-10-22. Egbert Rijke and Fredrik Bakke. Refactor synthetic homotopy theory (#654).
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).