Identity systems of descent data for pushouts
Content created by Vojtěch Štěpančík.
Created on 2024-06-06.
Last modified on 2024-06-06.
{-# OPTIONS --lossy-unification #-} module synthetic-homotopy-theory.identity-systems-descent-data-pushouts where
Imports
open import foundation.commuting-squares-of-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.identity-systems open import foundation.identity-types open import foundation.sections open import foundation.singleton-induction open import foundation.span-diagrams open import foundation.torsorial-type-families open import foundation.transposition-identifications-along-equivalences open import foundation.universal-property-dependent-pair-types open import foundation.universal-property-identity-types open import foundation.universe-levels open import synthetic-homotopy-theory.cocones-under-spans open import synthetic-homotopy-theory.dependent-universal-property-pushouts open import synthetic-homotopy-theory.descent-data-equivalence-types-over-pushouts open import synthetic-homotopy-theory.descent-data-identity-types-over-pushouts open import synthetic-homotopy-theory.descent-data-pushouts open import synthetic-homotopy-theory.descent-property-pushouts open import synthetic-homotopy-theory.equivalences-descent-data-pushouts open import synthetic-homotopy-theory.families-descent-data-pushouts open import synthetic-homotopy-theory.flattening-lemma-pushouts open import synthetic-homotopy-theory.morphisms-descent-data-pushouts open import synthetic-homotopy-theory.sections-descent-data-pushouts open import synthetic-homotopy-theory.universal-property-pushouts
Idea
We define a universal property of descent data for the identity types of pushouts, which allows their alternative characterizations. The property is analogous to being an identity system; in fact, we show that a type family over a pushout is an identity system if and only if the corresponding descent data satisfies this universal property.
Given descent data (PA, PB, PS)
for the pushout
g
S -----> B
| |
f | H | j
∨ ∨
A -----> X
i
and a point p₀ : PA a₀
over a basepoint a₀ : A
, we would like to mirror the
definition of identity systems. A naïve translation would lead us to define
dependent descent data and its sections. We choose to sidestep building that
technical infrastructure. By the
descent property,
there is a unique type family
P : X → 𝒰
corresponding to
(PA, PB, PS)
. Observe that the type of dependent type families
(x : X) → (p : P x) → 𝒰
is equivalent to
the uncurried form
(Σ X P) → 𝒰
. By the
flattening lemma, the
total space Σ X P
is the pushout of the
span diagram of total spaces
Σ A PA <----- Σ S (PA ∘ f) -----> Σ B PB,
so, again by the descent property, descent data over it correspond to type
families over Σ X P
. Hence we can talk about descent data (RΣA, RΣB, RΣS)
over the total span diagram instead of dependent descent data.
Every such descent data induces an evaluation map ev-refl
on its
sections, which
takes a section (tA, tB, tS)
of (RΣA, RΣB, RΣS)
to the point
tA (a₀, p₀) : RΣA (a₀, p₀)
. We say that (PA, PB, PS)
is an
identity system¶
based at p₀
if ev-refl
has a section, in the
sense that there is a converse map
ind-R : RΣA (a₀, p₀) → section-descent-data (RΣA, RΣB, RΣS)
such that
(ind-R r)A (a₀, p₀) = r
for all r : RΣA (a₀, p₀)
. Mind the unfortunate
terminology clash between “sections of descent data” and “sections of a map”.
Note that this development is biased towards to left — we pick a basepoint in
the domain a₀ : A
, a point in the left type family p₀ : PA a₀
, and the
evaluation map evaluates the left map of the section. By symmetry of pushouts we
could just as well work with the points b₀ : B
, p₀ : PB b₀
, and the
evaluation map evaluating the right map of the section.
By showing that the canonical descent data for identity types is an identity system, we recover the “induction principle for pushout equality” stated and proved by Kraus and von Raumer in [KvR19].
First observe that the type of sections of the evaluation map is
Σ (ind-R : (r : RΣA (a₀, p₀)) → section (RΣA, RΣB, RΣS))
(is-sect : (r : RΣA (a₀, p₀)) → (ind-R r)A (a₀, p₀) = r),
which is equivalent to the type
(r : RΣA (a₀, p₀)) →
Σ (ind : section (RΣA, RΣB, RΣS))
(preserves-pt : indA (a₀, p₀) = r)
by distributivity of Π over Σ.
Then the induction terms from [KvR19] (with names changed to fit our naming scheme)
indᴬ : (a : A) (q : ia₀ = ia) → RΣA (a, q)
indᴮ : (b : B) (q : ia₀ = jb) → RΣB (b, q)
are the first and second components of the section of (RΣA, RΣB, RΣS)
induced
by r
, and their computation rules
indᴬ a₀ refl = r
(s : S) (q : ia₀ = ifa) → RΣS (s, q) (indᴬ fs q) = indᴮ gs (q ∙ H s)
arise as the preserves-pt
component above, and the coherence condition of a
section of (RΣA, RΣB, RΣS)
, respectively.
Definitions
The evaluation map of a section of descent data for pushouts
module _ {l1 l2 l3 l4 : Level} {𝒮 : span-diagram l1 l2 l3} (P : descent-data-pushout 𝒮 l4) {a₀ : domain-span-diagram 𝒮} (p₀ : left-family-descent-data-pushout P a₀) where ev-refl-section-descent-data-pushout : {l5 : Level} (R : descent-data-pushout (span-diagram-flattening-descent-data-pushout P) l5) (t : section-descent-data-pushout R) → left-family-descent-data-pushout R (a₀ , p₀) ev-refl-section-descent-data-pushout R t = left-map-section-descent-data-pushout R t (a₀ , p₀)
The predicate of being an identity system on descent data for pushouts
module _ {l1 l2 l3 l4 : Level} {𝒮 : span-diagram l1 l2 l3} (P : descent-data-pushout 𝒮 l4) {a₀ : domain-span-diagram 𝒮} (p₀ : left-family-descent-data-pushout P a₀) where is-identity-system-descent-data-pushout : UUω is-identity-system-descent-data-pushout = {l5 : Level} (R : descent-data-pushout ( span-diagram-flattening-descent-data-pushout P) ( l5)) → section (ev-refl-section-descent-data-pushout P p₀ R)
Properties
A type family over a pushout is an identity system if and only if the corresponding descent data is an identity system
Given a family with descent data P ≃ (PA, PB, PS)
and a point p₀ : PA a₀
, we
show that (PA, PB, PS)
is an identity system at p₀
if an only if P
is an
identity system at (eᴾA a)⁻¹ p₀ : P (ia₀)
.
Proof: Consider a family with descent data RΣ ≈ (RΣA, RΣB, RΣS)
. Recall
that this datum consists of a type family RΣ : Σ X P → 𝒰
, descent data
RΣA : Σ A PA → 𝒰
RΣB : Σ B PB → 𝒰
RΣS : ((s, p) : (Σ (s : S) (p : PA fs))) → RΣA (fs, p) ≃ RΣB (gs, PS s p),
a pair of equivalences
eᴿA : ((a, p) : Σ A PA) → RΣ (ia, (eᴾA a)⁻¹ p) ≃ RΣA (a, p)
eᴿB : ((b, p) : Σ B PB) → RΣ (jb, (eᴾB b)⁻¹ p) ≃ RΣB (b, p),
and a coherence between them that isn’t relevant here. Then there is a commuting square
(x : X) → (p : P x) → RΣ (x, p) ---> (u : Σ X P) → RΣ u ----> section (RΣA, RΣB, RΣS)
| |
| ev-refl ((eᴾA a)⁻¹ p₀) | ev-refl p₀
| |
∨ ∨
RΣ (ia₀, (eᴾA a)⁻¹ p₀) ---------------------------------------> RΣA (a₀, p₀).
eᴿA (a₀, p₀)
Since the top and bottom maps are equivalences, we get that the left map has a section if and only if the right map has a section.
module _ {l1 l2 l3 l4 l5 : Level} {𝒮 : span-diagram l1 l2 l3} {X : UU l4} {c : cocone-span-diagram 𝒮 X} (P : family-with-descent-data-pushout c l5) {a₀ : domain-span-diagram 𝒮} (p₀ : left-family-family-with-descent-data-pushout P a₀) where private cocone-flattening : cocone-span-diagram ( span-diagram-flattening-descent-data-pushout ( descent-data-family-with-descent-data-pushout P)) ( Σ X (family-cocone-family-with-descent-data-pushout P)) cocone-flattening = cocone-flattening-descent-data-pushout _ _ c ( descent-data-family-with-descent-data-pushout P) ( family-cocone-family-with-descent-data-pushout P) ( inv-equiv-descent-data-family-with-descent-data-pushout P) square-ev-refl-section-descent-data-pushout : {l5 : Level} (R : family-with-descent-data-pushout ( cocone-flattening-descent-data-pushout _ _ c ( descent-data-family-with-descent-data-pushout P) ( family-cocone-family-with-descent-data-pushout P) ( inv-equiv-descent-data-pushout _ _ ( equiv-descent-data-family-with-descent-data-pushout P))) ( l5)) → coherence-square-maps ( section-descent-data-section-family-cocone-span-diagram R ∘ ind-Σ) ( ev-refl-identity-system ( inv-left-map-family-with-descent-data-pushout P a₀ p₀)) ( ev-refl-section-descent-data-pushout ( descent-data-family-with-descent-data-pushout P) ( p₀) ( descent-data-family-with-descent-data-pushout R)) ( left-map-family-with-descent-data-pushout R (a₀ , p₀)) square-ev-refl-section-descent-data-pushout R = refl-htpy
To show the forward implication, assume that (PA, PB, PS)
is an identity
system at p₀
. We need to show that for every R : (x : X) (p : P x) → 𝒰
, the
evaluation map ev-refl ((eᴾA a)⁻¹ p₀)
has a section. By the descent property,
there is unique descent data (RΣA, RΣB, RΣS)
for the uncurried family
RΣ := λ (x, p) → R x p
. Then we get the above square, and by assumption the
right map has a section, hence the left map has a section.
abstract is-identity-system-is-identity-system-descent-data-pushout : universal-property-pushout _ _ c → is-identity-system-descent-data-pushout ( descent-data-family-with-descent-data-pushout P) ( p₀) → is-identity-system ( family-cocone-family-with-descent-data-pushout P) ( horizontal-map-cocone _ _ c a₀) ( inv-left-map-family-with-descent-data-pushout P a₀ p₀) is-identity-system-is-identity-system-descent-data-pushout up-c id-system-P {l} R = section-left-map-triangle _ _ _ ( square-ev-refl-section-descent-data-pushout fam-R) ( section-is-equiv ( is-equiv-comp _ _ ( is-equiv-ind-Σ) ( is-equiv-section-descent-data-section-family-cocone-span-diagram ( fam-R) ( flattening-lemma-descent-data-pushout _ _ c ( descent-data-family-with-descent-data-pushout P) ( family-cocone-family-with-descent-data-pushout P) ( inv-equiv-descent-data-family-with-descent-data-pushout P) ( up-c))))) ( id-system-P (descent-data-family-with-descent-data-pushout fam-R)) where fam-R : family-with-descent-data-pushout cocone-flattening l fam-R = family-with-descent-data-pushout-family-cocone ( cocone-flattening) ( ind-Σ R)
Similarly, assume P
is an identity system at (eᴾA a)⁻¹ p₀
, and assume
descent data (RΣA, RΣB, RΣS)
. There is a unique corresponding type family
RΣ
. Then the square above commutes, and the left map has a section by
assumption, so the right map has a section.
abstract is-identity-system-descent-data-pushout-is-identity-system : universal-property-pushout _ _ c → is-identity-system ( family-cocone-family-with-descent-data-pushout P) ( horizontal-map-cocone _ _ c a₀) ( inv-left-map-family-with-descent-data-pushout P a₀ p₀) → is-identity-system-descent-data-pushout ( descent-data-family-with-descent-data-pushout P) ( p₀) is-identity-system-descent-data-pushout-is-identity-system up-c id-system-P {l} R = section-right-map-triangle _ _ _ ( square-ev-refl-section-descent-data-pushout fam-R) ( section-comp _ _ ( id-system-P ( ev-pair (family-cocone-family-with-descent-data-pushout fam-R))) ( section-map-equiv ( left-equiv-family-with-descent-data-pushout fam-R (a₀ , p₀)))) where fam-R : family-with-descent-data-pushout cocone-flattening l fam-R = family-with-descent-data-pushout-descent-data-pushout ( flattening-lemma-descent-data-pushout _ _ c ( descent-data-family-with-descent-data-pushout P) ( family-cocone-family-with-descent-data-pushout P) ( inv-equiv-descent-data-family-with-descent-data-pushout P) ( up-c)) ( R)
The canonical descent data for families of identity types is an identity system
Proof: By the above property, the descent data (IA, IB, IS)
is an identity
system at refl : ia₀ = ia₀
if and only if the corresponding type family
Id (ia₀) : X → 𝒰
is an identity system at refl
, which is already
established.
module _ {l1 l2 l3 l4 : Level} {𝒮 : span-diagram l1 l2 l3} {X : UU l4} {c : cocone-span-diagram 𝒮 X} (up-c : universal-property-pushout _ _ c) (a₀ : domain-span-diagram 𝒮) where abstract induction-principle-descent-data-pushout-identity-type : is-identity-system-descent-data-pushout ( descent-data-identity-type-pushout c (horizontal-map-cocone _ _ c a₀)) ( refl) induction-principle-descent-data-pushout-identity-type = is-identity-system-descent-data-pushout-is-identity-system ( family-with-descent-data-identity-type-pushout c ( horizontal-map-cocone _ _ c a₀)) ( refl) ( up-c) ( is-identity-system-is-torsorial ( horizontal-map-cocone _ _ c a₀) ( refl) ( is-torsorial-Id _))
Unique uniqueness of identity systems
For any identity system (PA, PB, PS)
at p₀
, there is a unique
equivalence of descent data
(IA, IB, IS) ≃ (PA, PB, PS)
sending refl
to p₀
.
Proof: Consider the unique type family P : X → 𝒰
corresponding to
(PA, PB, PS).
The type of point preserving equivalences between (IA, IB, IS)
and (PA, PB, PS)
is equivalent to the type of
fiberwise equivalences
(x : X) → (ia₀ = x) ≃ P x
that send refl
to (eᴾA a₀)⁻¹ p₀
. To show that
this type is contractible, it suffices to show that P
is
torsorial. A type family is
torsorial if it is an identity system, and we have shown that (PA, PB, PS)
being an identity system implies that P
is an identity system.
module _ {l1 l2 l3 l4 l5 : Level} {𝒮 : span-diagram l1 l2 l3} {X : UU l4} {c : cocone-span-diagram 𝒮 X} (up-c : universal-property-pushout _ _ c) (P : descent-data-pushout 𝒮 l5) {a₀ : domain-span-diagram 𝒮} (p₀ : left-family-descent-data-pushout P a₀) (id-system-P : is-identity-system-descent-data-pushout P p₀) where abstract unique-uniqueness-identity-system-descent-data-pushout : is-contr ( Σ ( equiv-descent-data-pushout ( descent-data-identity-type-pushout c ( horizontal-map-cocone _ _ c a₀)) ( P)) ( λ e → left-map-equiv-descent-data-pushout _ _ e a₀ refl = p₀)) unique-uniqueness-identity-system-descent-data-pushout = is-contr-is-equiv' ( Σ ( (x : X) → (horizontal-map-cocone _ _ c a₀ = x) ≃ family-cocone-family-with-descent-data-pushout fam-P x) ( λ e → map-equiv (e (horizontal-map-cocone _ _ c a₀)) refl = p₀')) ( _) ( is-equiv-map-Σ _ ( is-equiv-equiv-descent-data-equiv-family-cocone-span-diagram ( family-with-descent-data-identity-type-pushout c ( horizontal-map-cocone _ _ c a₀)) ( fam-P) ( up-c)) ( λ e → is-equiv-map-inv-equiv ( eq-transpose-equiv ( left-equiv-family-with-descent-data-pushout fam-P a₀) ( _) ( p₀)))) ( is-torsorial-pointed-fam-equiv-is-torsorial p₀' ( is-torsorial-is-identity-system ( horizontal-map-cocone _ _ c a₀) ( p₀') ( is-identity-system-is-identity-system-descent-data-pushout ( fam-P) ( p₀) ( up-c) ( id-system-P)))) where fam-P : family-with-descent-data-pushout c l5 fam-P = family-with-descent-data-pushout-descent-data-pushout up-c P p₀' : family-cocone-family-with-descent-data-pushout ( fam-P) ( horizontal-map-cocone _ _ c a₀) p₀' = map-compute-inv-left-family-cocone-descent-data-pushout up-c P a₀ p₀
Descent data with a converse to the evaluation map of sections of descent data is an identity system
To show that (PA, PB, PS)
is an identity system at p₀ : PA a₀
, it suffices
to provide an element of the type H : RΣA (a₀, p₀) → section (RΣA, RΣB, RΣS)
for all (RΣA, RΣB, RΣS)
.
Proof: Consider the unique family P : X → 𝒰
for (PA, PB, PS)
. It
suffices to show that P
is an identity system. As above, we can do that by
showing that it is torsorial. By definition, that means that the total space
Σ X P
is contractible. We can prove that using the property that a type is
contractible if we provide a point, here (ia₀, (eᴾA a)⁻¹ p₀)
, and a map
H' : (RΣ : Σ X P → 𝒰) → (r₀ : RΣ (ia₀, (eᴾA a)⁻¹ p₀)) → (u : Σ X P) → RΣ u.
Assume such RΣ
and r₀
. A section (u : Σ X P) → RΣ u
is given by a section
of (RΣA, RΣB, RΣS)
, and we can get one by applying H
to
eᴿA (a₀, p₀) r₀ : RΣA (a₀, p₀)
.
module _ {l1 l2 l3 l4 l5 : Level} {𝒮 : span-diagram l1 l2 l3} {X : UU l4} {c : cocone-span-diagram 𝒮 X} (up-c : universal-property-pushout _ _ c) (P : descent-data-pushout 𝒮 l5) {a₀ : domain-span-diagram 𝒮} (p₀ : left-family-descent-data-pushout P a₀) where abstract is-identity-system-descent-data-pushout-ind-singleton : (H : {l6 : Level} (R : descent-data-pushout ( span-diagram-flattening-descent-data-pushout P) ( l6)) (r₀ : left-family-descent-data-pushout R (a₀ , p₀)) → section-descent-data-pushout R) → is-identity-system-descent-data-pushout P p₀ is-identity-system-descent-data-pushout-ind-singleton H = is-identity-system-descent-data-pushout-is-identity-system ( family-with-descent-data-pushout-descent-data-pushout up-c P) ( p₀) ( up-c) ( is-identity-system-is-torsorial ( horizontal-map-cocone _ _ c a₀) ( p₀') ( is-contr-ind-singleton _ ( horizontal-map-cocone _ _ c a₀ , p₀') ( λ R r₀ → section-family-section-descent-data-pushout ( flattening-lemma-descent-data-pushout _ _ c P ( family-cocone-descent-data-pushout up-c P) ( inv-equiv-family-cocone-descent-data-pushout up-c P) ( up-c)) ( family-with-descent-data-pushout-family-cocone _ R) ( H (descent-data-family-cocone-span-diagram _ R) r₀)))) where p₀' : family-cocone-descent-data-pushout up-c P ( horizontal-map-cocone _ _ c a₀) p₀' = map-compute-inv-left-family-cocone-descent-data-pushout up-c P a₀ p₀
References
- [KvR19]
- Nicolai Kraus and Jakob von Raumer. Path Spaces of Higher Inductive Types in Homotopy Type Theory. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '19. IEEE Press, 2019. arXiv:1901.06022.
Recent changes
- 2024-06-06. Vojtěch Štěpančík. Identity systems of descent data for pushouts (#1150).