Group actions
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Elisabeth Stenholm.
Created on 2022-03-17.
Last modified on 2023-11-24.
module group-theory.group-actions where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.subgroups open import group-theory.symmetric-groups open import group-theory.trivial-group-homomorphisms
Idea
An action of a group G
on a
set X
, also called a G
-action, is a
group homomorphism from G
into
symmetric-Group X
. A set equipped with a G
-action is called a G
-set.
Definitions
The type of G
-sets
module _ {l1 : Level} (G : Group l1) where action-Group : (l : Level) → UU (l1 ⊔ lsuc l) action-Group l = Σ (Set l) (λ X → hom-Group G (symmetric-Group X)) module _ {l1 l2 : Level} (G : Group l1) (X : action-Group G l2) where set-action-Group : Set l2 set-action-Group = pr1 X type-action-Group : UU l2 type-action-Group = type-Set set-action-Group is-set-type-action-Group : is-set type-action-Group is-set-type-action-Group = is-set-type-Set set-action-Group equiv-mul-action-Group : type-Group G → type-action-Group ≃ type-action-Group equiv-mul-action-Group = map-hom-Group G (symmetric-Group set-action-Group) (pr2 X) mul-action-Group : type-Group G → type-action-Group → type-action-Group mul-action-Group g = map-equiv (equiv-mul-action-Group g) mul-action-Group' : type-action-Group → type-Group G → type-action-Group mul-action-Group' x g = mul-action-Group g x preserves-unit-mul-action-Group : mul-action-Group (unit-Group G) ~ id preserves-unit-mul-action-Group = htpy-eq ( ap pr1 ( preserves-unit-hom-Group G ( symmetric-Group set-action-Group) ( pr2 X))) preserves-mul-action-Group : (g : type-Group G) (h : type-Group G) (x : type-action-Group) → mul-action-Group (mul-Group G g h) x = mul-action-Group g (mul-action-Group h x) preserves-mul-action-Group g h = htpy-eq ( ap pr1 ( preserves-mul-hom-Group G (symmetric-Group set-action-Group) (pr2 X))) transpose-eq-mul-action-Group : (g : type-Group G) (x y : type-action-Group) → mul-action-Group g x = y → x = mul-action-Group (inv-Group G g) y transpose-eq-mul-action-Group g x ._ refl = ( inv ( ( ap (mul-action-Group' x) (left-inverse-law-mul-Group G g)) ∙ ( preserves-unit-mul-action-Group x))) ∙ ( preserves-mul-action-Group (inv-Group G g) g x)
Examples
Trivial G
-sets
Every set gives rise to a G
-set by having every point fixed under the action
of G
.
module _ {l1 l2 : Level} (G : Group l1) (X : Set l2) where trivial-action-Group : action-Group G l2 pr1 trivial-action-Group = X pr2 trivial-action-Group = trivial-hom-Group G (symmetric-Group X)
External links
- Group action at Wikipedia
- Actions of a group at Lab
- Group Action at Wolfram MathWorld
Recent changes
- 2023-11-24. Fredrik Bakke. The orbit category of a group (#935).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).