The precategory of algebras of an algebraic theory
Content created by Fredrik Bakke.
Created on 2025-10-31.
Last modified on 2025-10-31.
module universal-algebra.precategory-of-algebras-algebraic-theories where
Imports
open import category-theory.large-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.sets open import foundation.universe-levels open import foundation-core.identity-types open import universal-algebra.algebraic-theories open import universal-algebra.algebras open import universal-algebra.homomorphisms-of-algebras open import universal-algebra.models-of-signatures open import universal-algebra.signatures
Idea
Given an algebraic theory T over a
signature σ, we have the
large precategory of T-algebras¶,
which consists of T-algebras and
T-algebra homomorphisms.
Definition
The large precategory of algebras
module _ {l1 l2 : Level} (σ : signature l1) (T : Algebraic-Theory l2 σ) where Algebra-Large-Precategory : Large-Precategory (λ l → l1 ⊔ l2 ⊔ lsuc l) (λ l3 l4 → l1 ⊔ l3 ⊔ l4) Algebra-Large-Precategory = make-Large-Precategory ( λ l → Algebra l σ T) ( set-hom-Algebra σ T) ( λ {l3} {l4} {l5} {X} {Y} {Z} → comp-hom-Algebra σ T X Y Z) ( λ {l} {X} → id-hom-Algebra σ T X) ( λ {l3} {l4} {l5} {l6} {X} {Y} {Z} {W} → associative-comp-hom-Algebra σ T X Y Z W) ( λ {l3} {l4} {X} {Y} → left-unit-law-comp-hom-Algebra σ T X Y) ( λ {l3} {l4} {X} {Y} → right-unit-law-comp-hom-Algebra σ T X Y)
The small precategory of algebras
module _ {l1 l2 : Level} (σ : signature l1) (T : Algebraic-Theory l2 σ) where Algebra-Precategory : (l3 : Level) → Precategory (l1 ⊔ l2 ⊔ lsuc l3) (l1 ⊔ l3) Algebra-Precategory = precategory-Large-Precategory (Algebra-Large-Precategory σ T)
See also
Recent changes
- 2025-10-31. Fredrik Bakke. Refactor
universal-algebra(#1657).