The precategory of algebras of an algebraic theory

Content created by Fredrik Bakke.

Created on 2025-10-31.
Last modified on 2025-10-31.

module universal-algebra.precategory-of-algebras-algebraic-theories where
Imports
open import category-theory.large-precategories
open import category-theory.precategories

open import foundation.dependent-pair-types
open import foundation.sets
open import foundation.universe-levels

open import foundation-core.identity-types

open import universal-algebra.algebraic-theories
open import universal-algebra.algebras
open import universal-algebra.homomorphisms-of-algebras
open import universal-algebra.models-of-signatures
open import universal-algebra.signatures

Idea

Given an algebraic theory T over a signature σ, we have the large precategory of T-algebras, which consists of T-algebras and T-algebra homomorphisms.

Definition

The large precategory of algebras

module _
  {l1 l2 : Level} (σ : signature l1) (T : Algebraic-Theory l2 σ)
  where

  Algebra-Large-Precategory :
    Large-Precategory  l  l1  l2  lsuc l)  l3 l4  l1  l3  l4)
  Algebra-Large-Precategory =
    make-Large-Precategory
      ( λ l  Algebra l σ T)
      ( set-hom-Algebra σ T)
      ( λ {l3} {l4} {l5} {X} {Y} {Z}  comp-hom-Algebra σ T X Y Z)
      ( λ {l} {X}  id-hom-Algebra σ T X)
      ( λ {l3} {l4} {l5} {l6} {X} {Y} {Z} {W} 
        associative-comp-hom-Algebra σ T X Y Z W)
      ( λ {l3} {l4} {X} {Y}  left-unit-law-comp-hom-Algebra σ T X Y)
      ( λ {l3} {l4} {X} {Y}  right-unit-law-comp-hom-Algebra σ T X Y)

The small precategory of algebras

module _
  {l1 l2 : Level} (σ : signature l1) (T : Algebraic-Theory l2 σ)
  where

  Algebra-Precategory : (l3 : Level)  Precategory (l1  l2  lsuc l3) (l1  l3)
  Algebra-Precategory =
    precategory-Large-Precategory (Algebra-Large-Precategory σ T)

See also

Recent changes