Conjugation of complex numbers
Content created by Louis Wasserman.
Created on 2025-11-16.
Last modified on 2026-01-11.
module complex-numbers.conjugation-complex-numbers where
Imports
open import complex-numbers.complex-numbers open import complex-numbers.raising-universe-levels-complex-numbers open import foundation.action-on-identifications-functions open import foundation.identity-types open import foundation.universe-levels open import real-numbers.dedekind-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.raising-universe-levels-real-numbers
Idea
The
conjugate¶
of a complex number a + bi is a - bi.
Definition
conjugate-ℂ : {l : Level} → ℂ l → ℂ l conjugate-ℂ (a +iℂ b) = a +iℂ neg-ℝ b
Properties
Conjugation is an involution
abstract is-involution-conjugate-ℂ : {l : Level} (z : ℂ l) → conjugate-ℂ (conjugate-ℂ z) = z is-involution-conjugate-ℂ (a +iℂ b) = eq-ℂ refl (neg-neg-ℝ b)
Conjugating raised complex numbers
abstract conjugate-raise-ℂ : {l0 : Level} (l : Level) (z : ℂ l0) → conjugate-ℂ (raise-ℂ l z) = raise-ℂ l (conjugate-ℂ z) conjugate-raise-ℂ l (a +iℂ b) = eq-ℂ refl (neg-raise-ℝ l b)
The conjugate of one-ℂ is one-ℂ
abstract conjugate-one-ℂ : conjugate-ℂ one-ℂ = one-ℂ conjugate-one-ℂ = eq-ℂ refl neg-zero-ℝ
The conjugate of complex-ℝ x is complex-ℝ x
abstract conjugate-complex-ℝ : {l : Level} (x : ℝ l) → conjugate-ℂ (complex-ℝ x) = complex-ℝ x conjugate-complex-ℝ {l} x = eq-ℂ refl (neg-raise-ℝ _ _ ∙ ap (raise-ℝ l) neg-zero-ℝ)
External links
- Complex conjugate at Wikidata
Recent changes
- 2026-01-11. Louis Wasserman. Complex inner product spaces (#1754).
- 2025-11-16. Louis Wasserman. Multiplicative inverses of nonzero complex numbers (#1684).