Normal submonoids
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Julian KG, Maša Žaucer, fernabnor and louismntnu.
Created on 2023-03-18.
Last modified on 2024-03-12.
module group-theory.normal-submonoids where
Imports
open import foundation.action-on-identifications-functions open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.equivalence-relations open import foundation.equivalences open import foundation.function-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.retracts-of-types open import foundation.sets open import foundation.subtype-identity-principle open import foundation.subtypes open import foundation.universe-levels open import group-theory.congruence-relations-monoids open import group-theory.monoids open import group-theory.saturated-congruence-relations-monoids open import group-theory.semigroups open import group-theory.submonoids open import group-theory.subsets-monoids
Idea
A normal submonoid N
of M
is a monoid for which there exists a
congruence relation ~
on M
such that the elements of N
are precisely the
elements x ~ 1
. Such a congruence relation is rarely unique. However, one can
show that the normal submonoids form a retract of the type of congruence
relations on M
, and that the normal submonoids correspond uniquely to
saturated congruence relations.
A submonoid N
of M
is normal if and only if for all x y : M
and u : N
we
have
xuy ∈ N ⇔ xy ∈ N.
Definitions
Normal submonoids
module _ {l1 l2 : Level} (M : Monoid l1) (N : Submonoid l2 M) where is-normal-prop-Submonoid : Prop (l1 ⊔ l2) is-normal-prop-Submonoid = Π-Prop ( type-Monoid M) ( λ x → Π-Prop ( type-Monoid M) ( λ y → Π-Prop ( type-Monoid M) ( λ u → function-Prop ( is-in-Submonoid M N u) ( iff-Prop ( subset-Submonoid M N (mul-Monoid M (mul-Monoid M x u) y)) ( subset-Submonoid M N (mul-Monoid M x y)))))) is-normal-Submonoid : UU (l1 ⊔ l2) is-normal-Submonoid = type-Prop is-normal-prop-Submonoid is-prop-is-normal-Submonoid : is-prop is-normal-Submonoid is-prop-is-normal-Submonoid = is-prop-type-Prop is-normal-prop-Submonoid Normal-Submonoid : {l1 : Level} (l2 : Level) → Monoid l1 → UU (l1 ⊔ lsuc l2) Normal-Submonoid l2 M = Σ (Submonoid l2 M) (is-normal-Submonoid M) module _ {l1 l2 : Level} (M : Monoid l1) (N : Normal-Submonoid l2 M) where submonoid-Normal-Submonoid : Submonoid l2 M submonoid-Normal-Submonoid = pr1 N is-normal-Normal-Submonoid : is-normal-Submonoid M submonoid-Normal-Submonoid is-normal-Normal-Submonoid = pr2 N subset-Normal-Submonoid : subtype l2 (type-Monoid M) subset-Normal-Submonoid = subset-Submonoid M submonoid-Normal-Submonoid is-submonoid-Normal-Submonoid : is-submonoid-subset-Monoid M subset-Normal-Submonoid is-submonoid-Normal-Submonoid = is-submonoid-Submonoid M submonoid-Normal-Submonoid is-in-Normal-Submonoid : type-Monoid M → UU l2 is-in-Normal-Submonoid = is-in-Submonoid M submonoid-Normal-Submonoid is-prop-is-in-Normal-Submonoid : (x : type-Monoid M) → is-prop (is-in-Normal-Submonoid x) is-prop-is-in-Normal-Submonoid = is-prop-is-in-Submonoid M submonoid-Normal-Submonoid is-closed-under-eq-Normal-Submonoid : {x y : type-Monoid M} → is-in-Normal-Submonoid x → (x = y) → is-in-Normal-Submonoid y is-closed-under-eq-Normal-Submonoid = is-closed-under-eq-subtype subset-Normal-Submonoid is-closed-under-eq-Normal-Submonoid' : {x y : type-Monoid M} → is-in-Normal-Submonoid y → (x = y) → is-in-Normal-Submonoid x is-closed-under-eq-Normal-Submonoid' = is-closed-under-eq-subtype' subset-Normal-Submonoid type-Normal-Submonoid : UU (l1 ⊔ l2) type-Normal-Submonoid = type-Submonoid M submonoid-Normal-Submonoid is-set-type-Normal-Submonoid : is-set type-Normal-Submonoid is-set-type-Normal-Submonoid = is-set-type-Submonoid M submonoid-Normal-Submonoid set-Normal-Submonoid : Set (l1 ⊔ l2) set-Normal-Submonoid = set-Submonoid M submonoid-Normal-Submonoid inclusion-Normal-Submonoid : type-Normal-Submonoid → type-Monoid M inclusion-Normal-Submonoid = inclusion-Submonoid M submonoid-Normal-Submonoid ap-inclusion-Normal-Submonoid : (x y : type-Normal-Submonoid) → x = y → inclusion-Normal-Submonoid x = inclusion-Normal-Submonoid y ap-inclusion-Normal-Submonoid = ap-inclusion-Submonoid M submonoid-Normal-Submonoid is-in-submonoid-inclusion-Normal-Submonoid : (x : type-Normal-Submonoid) → is-in-Normal-Submonoid (inclusion-Normal-Submonoid x) is-in-submonoid-inclusion-Normal-Submonoid = is-in-submonoid-inclusion-Submonoid M submonoid-Normal-Submonoid contains-unit-Normal-Submonoid : is-in-Normal-Submonoid (unit-Monoid M) contains-unit-Normal-Submonoid = contains-unit-Submonoid M submonoid-Normal-Submonoid unit-Normal-Submonoid : type-Normal-Submonoid unit-Normal-Submonoid = unit-Submonoid M submonoid-Normal-Submonoid is-closed-under-multiplication-Normal-Submonoid : {x y : type-Monoid M} → is-in-Normal-Submonoid x → is-in-Normal-Submonoid y → is-in-Normal-Submonoid (mul-Monoid M x y) is-closed-under-multiplication-Normal-Submonoid = is-closed-under-multiplication-Submonoid M submonoid-Normal-Submonoid mul-Normal-Submonoid : (x y : type-Normal-Submonoid) → type-Normal-Submonoid mul-Normal-Submonoid = mul-Submonoid M submonoid-Normal-Submonoid associative-mul-Normal-Submonoid : (x y z : type-Normal-Submonoid) → (mul-Normal-Submonoid (mul-Normal-Submonoid x y) z) = (mul-Normal-Submonoid x (mul-Normal-Submonoid y z)) associative-mul-Normal-Submonoid = associative-mul-Submonoid M submonoid-Normal-Submonoid semigroup-Normal-Submonoid : Semigroup (l1 ⊔ l2) semigroup-Normal-Submonoid = semigroup-Submonoid M submonoid-Normal-Submonoid left-unit-law-mul-Normal-Submonoid : (x : type-Normal-Submonoid) → mul-Normal-Submonoid unit-Normal-Submonoid x = x left-unit-law-mul-Normal-Submonoid = left-unit-law-mul-Submonoid M submonoid-Normal-Submonoid right-unit-law-mul-Normal-Submonoid : (x : type-Normal-Submonoid) → mul-Normal-Submonoid x unit-Normal-Submonoid = x right-unit-law-mul-Normal-Submonoid = right-unit-law-mul-Submonoid M submonoid-Normal-Submonoid monoid-Normal-Submonoid : Monoid (l1 ⊔ l2) monoid-Normal-Submonoid = monoid-Submonoid M submonoid-Normal-Submonoid
Properties
Extensionality of the type of all normal submonoids
module _ {l1 l2 : Level} (M : Monoid l1) (N : Normal-Submonoid l2 M) where has-same-elements-Normal-Submonoid : {l3 : Level} → Normal-Submonoid l3 M → UU (l1 ⊔ l2 ⊔ l3) has-same-elements-Normal-Submonoid K = has-same-elements-Submonoid M ( submonoid-Normal-Submonoid M N) ( submonoid-Normal-Submonoid M K) extensionality-Normal-Submonoid : (K : Normal-Submonoid l2 M) → (N = K) ≃ has-same-elements-Normal-Submonoid K extensionality-Normal-Submonoid = extensionality-type-subtype ( is-normal-prop-Submonoid M) ( is-normal-Normal-Submonoid M N) ( λ x → (id , id)) ( extensionality-Submonoid M (submonoid-Normal-Submonoid M N)) eq-has-same-elements-Normal-Submonoid : (K : Normal-Submonoid l2 M) → has-same-elements-Normal-Submonoid K → N = K eq-has-same-elements-Normal-Submonoid K = map-inv-equiv (extensionality-Normal-Submonoid K)
The congruence relation of a normal submonoid
module _ {l1 l2 : Level} (M : Monoid l1) (N : Normal-Submonoid l2 M) where rel-congruence-Normal-Submonoid : Relation-Prop (l1 ⊔ l2) (type-Monoid M) rel-congruence-Normal-Submonoid x y = Π-Prop ( type-Monoid M) ( λ u → Π-Prop ( type-Monoid M) ( λ v → iff-Prop ( subset-Normal-Submonoid M N ( mul-Monoid M (mul-Monoid M u x) v)) ( subset-Normal-Submonoid M N ( mul-Monoid M (mul-Monoid M u y) v)))) sim-congruence-Normal-Submonoid : (x y : type-Monoid M) → UU (l1 ⊔ l2) sim-congruence-Normal-Submonoid x y = type-Prop (rel-congruence-Normal-Submonoid x y) refl-congruence-Normal-Submonoid : is-reflexive sim-congruence-Normal-Submonoid pr1 (refl-congruence-Normal-Submonoid _ u v) = id pr2 (refl-congruence-Normal-Submonoid _ u v) = id symmetric-congruence-Normal-Submonoid : is-symmetric sim-congruence-Normal-Submonoid pr1 (symmetric-congruence-Normal-Submonoid _ _ H u v) = pr2 (H u v) pr2 (symmetric-congruence-Normal-Submonoid _ _ H u v) = pr1 (H u v) transitive-congruence-Normal-Submonoid : is-transitive sim-congruence-Normal-Submonoid transitive-congruence-Normal-Submonoid _ _ _ H K u v = (H u v) ∘iff (K u v) equivalence-relation-congruence-Normal-Submonoid : equivalence-relation (l1 ⊔ l2) (type-Monoid M) pr1 equivalence-relation-congruence-Normal-Submonoid = rel-congruence-Normal-Submonoid pr1 (pr2 equivalence-relation-congruence-Normal-Submonoid) = refl-congruence-Normal-Submonoid pr1 (pr2 (pr2 equivalence-relation-congruence-Normal-Submonoid)) = symmetric-congruence-Normal-Submonoid pr2 (pr2 (pr2 equivalence-relation-congruence-Normal-Submonoid)) = transitive-congruence-Normal-Submonoid is-congruence-congruence-Normal-Submonoid : is-congruence-Monoid M equivalence-relation-congruence-Normal-Submonoid pr1 (is-congruence-congruence-Normal-Submonoid {x} {x'} {y} {y'} H K u v) L = is-closed-under-eq-Normal-Submonoid M N ( forward-implication ( H u (mul-Monoid M y' v)) ( is-closed-under-eq-Normal-Submonoid M N ( forward-implication ( K (mul-Monoid M u x) v) ( is-closed-under-eq-Normal-Submonoid M N L ( ap (mul-Monoid' M v) (inv (associative-mul-Monoid M u x y))))) ( associative-mul-Monoid M (mul-Monoid M u x) y' v))) ( ( inv (associative-mul-Monoid M (mul-Monoid M u x') y' v)) ∙ ( ap (mul-Monoid' M v) (associative-mul-Monoid M u x' y'))) pr2 (is-congruence-congruence-Normal-Submonoid {x} {x'} {y} {y'} H K u v) L = is-closed-under-eq-Normal-Submonoid M N ( backward-implication ( H u (mul-Monoid M y v)) ( is-closed-under-eq-Normal-Submonoid M N ( backward-implication ( K (mul-Monoid M u x') v) ( is-closed-under-eq-Normal-Submonoid M N L ( ap (mul-Monoid' M v) (inv (associative-mul-Monoid M u x' y'))))) ( associative-mul-Monoid M (mul-Monoid M u x') y v))) ( ( inv (associative-mul-Monoid M (mul-Monoid M u x) y v)) ∙ ( ap (mul-Monoid' M v) (associative-mul-Monoid M u x y))) congruence-Normal-Submonoid : congruence-Monoid (l1 ⊔ l2) M pr1 congruence-Normal-Submonoid = equivalence-relation-congruence-Normal-Submonoid pr2 congruence-Normal-Submonoid = is-congruence-congruence-Normal-Submonoid
The normal submonoid obtained from a congruence relation
module _ {l1 l2 : Level} (M : Monoid l1) (R : congruence-Monoid l2 M) where subset-normal-submonoid-congruence-Monoid : subtype l2 (type-Monoid M) subset-normal-submonoid-congruence-Monoid x = prop-congruence-Monoid M R x (unit-Monoid M) is-in-normal-submonoid-congruence-Monoid : type-Monoid M → UU l2 is-in-normal-submonoid-congruence-Monoid = is-in-subtype subset-normal-submonoid-congruence-Monoid contains-unit-normal-submonoid-congruence-Monoid : is-in-normal-submonoid-congruence-Monoid (unit-Monoid M) contains-unit-normal-submonoid-congruence-Monoid = refl-congruence-Monoid M R (unit-Monoid M) is-closed-under-multiplication-normal-submonoid-congruence-Monoid : is-closed-under-multiplication-subset-Monoid M subset-normal-submonoid-congruence-Monoid is-closed-under-multiplication-normal-submonoid-congruence-Monoid x y H K = concatenate-sim-eq-congruence-Monoid M R ( mul-congruence-Monoid M R H K) ( left-unit-law-mul-Monoid M (unit-Monoid M)) submonoid-congruence-Monoid : Submonoid l2 M pr1 submonoid-congruence-Monoid = subset-normal-submonoid-congruence-Monoid pr1 (pr2 submonoid-congruence-Monoid) = contains-unit-normal-submonoid-congruence-Monoid pr2 (pr2 submonoid-congruence-Monoid) = is-closed-under-multiplication-normal-submonoid-congruence-Monoid is-normal-submonoid-congruence-Monoid : is-normal-Submonoid M submonoid-congruence-Monoid pr1 (is-normal-submonoid-congruence-Monoid x y u H) K = transitive-congruence-Monoid M R ( mul-Monoid M x y) ( mul-Monoid M (mul-Monoid M x u) y) ( unit-Monoid M) ( K) ( symmetric-congruence-Monoid M R ( mul-Monoid M (mul-Monoid M x u) y) ( mul-Monoid M x y) ( mul-congruence-Monoid M R ( concatenate-sim-eq-congruence-Monoid M R ( mul-congruence-Monoid M R (refl-congruence-Monoid M R x) H) ( right-unit-law-mul-Monoid M x)) ( refl-congruence-Monoid M R y))) pr2 (is-normal-submonoid-congruence-Monoid x y u H) K = transitive-congruence-Monoid M R ( mul-Monoid M (mul-Monoid M x u) y) ( mul-Monoid M x y) ( unit-Monoid M) ( K) ( mul-congruence-Monoid M R ( concatenate-sim-eq-congruence-Monoid M R ( mul-congruence-Monoid M R (refl-congruence-Monoid M R x) H) ( right-unit-law-mul-Monoid M x)) ( refl-congruence-Monoid M R y)) normal-submonoid-congruence-Monoid : Normal-Submonoid l2 M pr1 normal-submonoid-congruence-Monoid = submonoid-congruence-Monoid pr2 normal-submonoid-congruence-Monoid = is-normal-submonoid-congruence-Monoid
The normal submonoid obtained from the congruence relation of a normal submonoid has the same elements as the original normal submonoid
module _ {l1 l2 : Level} (M : Monoid l1) (N : Normal-Submonoid l2 M) where has-same-elements-normal-submonoid-congruence-Normal-Submonoid : has-same-elements-Normal-Submonoid M ( normal-submonoid-congruence-Monoid M ( congruence-Normal-Submonoid M N)) ( N) pr1 (has-same-elements-normal-submonoid-congruence-Normal-Submonoid x) H = is-closed-under-eq-Normal-Submonoid M N ( backward-implication ( H (unit-Monoid M) (unit-Monoid M)) ( is-closed-under-eq-Normal-Submonoid' M N ( contains-unit-Normal-Submonoid M N) ( ( right-unit-law-mul-Monoid M ( mul-Monoid M (unit-Monoid M) (unit-Monoid M))) ∙ ( left-unit-law-mul-Monoid M (unit-Monoid M))))) ( right-unit-law-mul-Monoid M _ ∙ left-unit-law-mul-Monoid M _) pr1 ( pr2 ( has-same-elements-normal-submonoid-congruence-Normal-Submonoid x) ( H) ( u) ( v)) ( K) = is-closed-under-eq-Normal-Submonoid' M N ( forward-implication (is-normal-Normal-Submonoid M N u v x H) K) ( ap (mul-Monoid' M v) (right-unit-law-mul-Monoid M u)) pr2 ( pr2 ( has-same-elements-normal-submonoid-congruence-Normal-Submonoid x) ( H) ( u) ( v)) ( K) = backward-implication ( is-normal-Normal-Submonoid M N u v x H) ( is-closed-under-eq-Normal-Submonoid M N K ( ap (mul-Monoid' M v) (right-unit-law-mul-Monoid M u)))
The congruence relation of a normal submonoid is saturated
module _ {l1 l2 : Level} (M : Monoid l1) (N : Normal-Submonoid l2 M) where is-saturated-congruence-Normal-Submonoid : is-saturated-congruence-Monoid M (congruence-Normal-Submonoid M N) is-saturated-congruence-Normal-Submonoid x y H u v = ( ( has-same-elements-normal-submonoid-congruence-Normal-Submonoid M N ( mul-Monoid M (mul-Monoid M u y) v)) ∘iff ( H u v)) ∘iff ( inv-iff ( has-same-elements-normal-submonoid-congruence-Normal-Submonoid M N ( mul-Monoid M (mul-Monoid M u x) v))) saturated-congruence-Normal-Submonoid : saturated-congruence-Monoid (l1 ⊔ l2) M pr1 saturated-congruence-Normal-Submonoid = congruence-Normal-Submonoid M N pr2 saturated-congruence-Normal-Submonoid = is-saturated-congruence-Normal-Submonoid
The congruence relation of the normal submonoid associated to a congruence relation relates the same elements as the original congruence relation
module _ {l1 l2 : Level} (M : Monoid l1) (R : saturated-congruence-Monoid l2 M) where normal-submonoid-saturated-congruence-Monoid : Normal-Submonoid l2 M normal-submonoid-saturated-congruence-Monoid = normal-submonoid-congruence-Monoid M ( congruence-saturated-congruence-Monoid M R) relate-same-elements-congruence-normal-submonoid-saturated-congruence-Monoid : relate-same-elements-saturated-congruence-Monoid M ( saturated-congruence-Normal-Submonoid M ( normal-submonoid-saturated-congruence-Monoid)) ( R) pr1 ( relate-same-elements-congruence-normal-submonoid-saturated-congruence-Monoid x y) H = is-saturated-saturated-congruence-Monoid M R x y H pr1 ( pr2 ( relate-same-elements-congruence-normal-submonoid-saturated-congruence-Monoid x y) H u v) K = transitive-saturated-congruence-Monoid M R ( mul-Monoid M (mul-Monoid M u y) v) ( mul-Monoid M (mul-Monoid M u x) v) ( unit-Monoid M) ( K) ( mul-saturated-congruence-Monoid M R ( mul-saturated-congruence-Monoid M R ( refl-saturated-congruence-Monoid M R u) ( symmetric-saturated-congruence-Monoid M R x y H)) ( refl-saturated-congruence-Monoid M R v)) pr2 ( pr2 ( relate-same-elements-congruence-normal-submonoid-saturated-congruence-Monoid x y) H u v) K = transitive-saturated-congruence-Monoid M R ( mul-Monoid M (mul-Monoid M u x) v) ( mul-Monoid M (mul-Monoid M u y) v) ( unit-Monoid M) ( K) ( mul-saturated-congruence-Monoid M R ( mul-saturated-congruence-Monoid M R ( refl-saturated-congruence-Monoid M R u) ( H)) ( refl-saturated-congruence-Monoid M R v))
The type of normal submonoids of M
is a retract of the type of congruence relations of M
is-section-congruence-Normal-Submonoid : {l1 : Level} (l2 : Level) (M : Monoid l1) (N : Normal-Submonoid (l1 ⊔ l2) M) → ( normal-submonoid-congruence-Monoid M (congruence-Normal-Submonoid M N)) = ( N) is-section-congruence-Normal-Submonoid l2 M N = eq-has-same-elements-Normal-Submonoid M ( normal-submonoid-congruence-Monoid M (congruence-Normal-Submonoid M N)) ( N) ( has-same-elements-normal-submonoid-congruence-Normal-Submonoid M N) normal-submonoid-retract-of-congruence-Monoid : {l1 : Level} (l2 : Level) (M : Monoid l1) → (Normal-Submonoid (l1 ⊔ l2) M) retract-of (congruence-Monoid (l1 ⊔ l2) M) pr1 (normal-submonoid-retract-of-congruence-Monoid l2 M) = congruence-Normal-Submonoid M pr1 (pr2 (normal-submonoid-retract-of-congruence-Monoid l2 M)) = normal-submonoid-congruence-Monoid M pr2 (pr2 (normal-submonoid-retract-of-congruence-Monoid l2 M)) = is-section-congruence-Normal-Submonoid l2 M
The type of normal submonoids of M
is equivalent to the type of saturated congruence relations on M
is-section-saturated-congruence-Normal-Submonoid : {l1 : Level} (l2 : Level) (M : Monoid l1) (N : Normal-Submonoid (l1 ⊔ l2) M) → ( normal-submonoid-saturated-congruence-Monoid M ( saturated-congruence-Normal-Submonoid M N)) = ( N) is-section-saturated-congruence-Normal-Submonoid l2 M N = eq-has-same-elements-Normal-Submonoid M ( normal-submonoid-saturated-congruence-Monoid M ( saturated-congruence-Normal-Submonoid M N)) ( N) ( has-same-elements-normal-submonoid-congruence-Normal-Submonoid M N) is-retraction-saturated-congruence-Normal-Submonoid : {l1 : Level} (l2 : Level) (M : Monoid l1) (R : saturated-congruence-Monoid (l1 ⊔ l2) M) → ( saturated-congruence-Normal-Submonoid M ( normal-submonoid-saturated-congruence-Monoid M R)) = ( R) is-retraction-saturated-congruence-Normal-Submonoid l2 M R = eq-relate-same-elements-saturated-congruence-Monoid M ( saturated-congruence-Normal-Submonoid M ( normal-submonoid-saturated-congruence-Monoid M R)) ( R) ( relate-same-elements-congruence-normal-submonoid-saturated-congruence-Monoid ( M) ( R)) is-equiv-normal-submonoid-saturated-congruence-Monoid : {l1 : Level} (l2 : Level) (M : Monoid l1) → is-equiv (normal-submonoid-saturated-congruence-Monoid {l2 = l1 ⊔ l2} M) is-equiv-normal-submonoid-saturated-congruence-Monoid l2 M = is-equiv-is-invertible ( saturated-congruence-Normal-Submonoid M) ( is-section-saturated-congruence-Normal-Submonoid l2 M) ( is-retraction-saturated-congruence-Normal-Submonoid l2 M) equiv-normal-submonoid-saturated-congruence-Monoid : {l1 : Level} (l2 : Level) (M : Monoid l1) → saturated-congruence-Monoid (l1 ⊔ l2) M ≃ Normal-Submonoid (l1 ⊔ l2) M pr1 (equiv-normal-submonoid-saturated-congruence-Monoid l2 M) = normal-submonoid-saturated-congruence-Monoid M pr2 (equiv-normal-submonoid-saturated-congruence-Monoid l2 M) = is-equiv-normal-submonoid-saturated-congruence-Monoid l2 M
References
- [MP87]
- S. W Margolis and J. E Pin. Inverse semigroups and extensions of groups by semilattices. Journal of Algebra, 110(2):277–297, 10 1987. doi:10.1016/0021-8693(87)90046-9.
Recent changes
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2023-11-24. Fredrik Bakke. The orbit category of a group (#935).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-11-09. Egbert Rijke and Fredrik Bakke. Refactoring of retractions, sections, and equivalences, and adding the 6-for-2 property of equivalences (#903).
- 2023-09-11. Fredrik Bakke and Egbert Rijke. Some computations for different notions of equivalence (#711).