Normal cores of subgroups
Content created by Egbert Rijke, Fredrik Bakke and Gregor Perčič.
Created on 2023-08-07.
Last modified on 2023-11-24.
module group-theory.normal-cores-subgroups where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalences open import foundation.identity-types open import foundation.intersections-subtypes open import foundation.logical-equivalences open import foundation.propositional-maps open import foundation.subtypes open import foundation.universe-levels open import group-theory.conjugation open import group-theory.groups open import group-theory.normal-subgroups open import group-theory.subgroups open import group-theory.subsets-groups open import order-theory.galois-connections-large-posets open import order-theory.order-preserving-maps-large-posets open import order-theory.order-preserving-maps-large-preorders
Idea
Consider a subgroup H
of a
group G
. The normal core of H
is the largest
normal subgroup of G
that is contained in
H
. It is equivalently described as the intersection of all
conjugates of H
.
In other words, the normal core operation is the upper adjoint in a
Galois connection between the
large poset of subgroups of G
and normal
subgroups of G
. The lower adjoint of this Galois connection is the inclusion
function from normal subgroups to subgroups of G
.
Note: The normal core should not be confused with the normalizer of a subgroup, or with the normal closure of a subgroup.
Definitions
The universal property of the normal core
module _ {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) where is-normal-core-Subgroup : {l3 : Level} (N : Normal-Subgroup l3 G) → UUω is-normal-core-Subgroup N = {l : Level} (M : Normal-Subgroup l G) → leq-Subgroup G (subgroup-Normal-Subgroup G M) H ↔ leq-Normal-Subgroup G M N
The construction of the normal core
module _ {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) where subset-normal-core-Subgroup : subset-Group (l1 ⊔ l2) G subset-normal-core-Subgroup = intersection-family-of-subtypes ( λ (x : type-Group G) → fiber-emb-Prop ( comp-emb ( emb-equiv (equiv-conjugation-Group G x)) ( emb-inclusion-Subgroup G H))) is-in-normal-core-Subgroup : type-Group G → UU (l1 ⊔ l2) is-in-normal-core-Subgroup = is-in-subtype subset-normal-core-Subgroup is-closed-under-eq-normal-core-Subgroup : {x y : type-Group G} → is-in-normal-core-Subgroup x → x = y → is-in-normal-core-Subgroup y is-closed-under-eq-normal-core-Subgroup = is-closed-under-eq-subtype subset-normal-core-Subgroup is-closed-under-eq-normal-core-Subgroup' : {x y : type-Group G} → is-in-normal-core-Subgroup y → x = y → is-in-normal-core-Subgroup x is-closed-under-eq-normal-core-Subgroup' = is-closed-under-eq-subtype' subset-normal-core-Subgroup contains-unit-normal-core-Subgroup : contains-unit-subset-Group G subset-normal-core-Subgroup pr1 (contains-unit-normal-core-Subgroup x) = unit-Subgroup G H pr2 (contains-unit-normal-core-Subgroup x) = conjugation-unit-Group G x is-closed-under-multiplication-normal-core-Subgroup : is-closed-under-multiplication-subset-Group G subset-normal-core-Subgroup pr1 (is-closed-under-multiplication-normal-core-Subgroup u v z) = mul-Subgroup G H (pr1 (u z)) (pr1 (v z)) pr2 (is-closed-under-multiplication-normal-core-Subgroup u v z) = ( distributive-conjugation-mul-Group G z ( inclusion-Subgroup G H (pr1 (u z))) ( inclusion-Subgroup G H (pr1 (v z)))) ∙ ( ap-mul-Group G (pr2 (u z)) (pr2 (v z))) is-closed-under-inverses-normal-core-Subgroup : is-closed-under-inverses-subset-Group G subset-normal-core-Subgroup pr1 (is-closed-under-inverses-normal-core-Subgroup u z) = inv-Subgroup G H (pr1 (u z)) pr2 (is-closed-under-inverses-normal-core-Subgroup u z) = ( conjugation-inv-Group G z (inclusion-Subgroup G H (pr1 (u z)))) ∙ ( ap (inv-Group G) (pr2 (u z))) subgroup-normal-core-Subgroup : Subgroup (l1 ⊔ l2) G pr1 subgroup-normal-core-Subgroup = subset-normal-core-Subgroup pr1 (pr2 subgroup-normal-core-Subgroup) = contains-unit-normal-core-Subgroup pr1 (pr2 (pr2 subgroup-normal-core-Subgroup)) = is-closed-under-multiplication-normal-core-Subgroup pr2 (pr2 (pr2 subgroup-normal-core-Subgroup)) = is-closed-under-inverses-normal-core-Subgroup is-normal-normal-core-Subgroup : is-normal-Subgroup G subgroup-normal-core-Subgroup pr1 (is-normal-normal-core-Subgroup x (y , u) z) = pr1 (u (left-div-Group G x z)) pr2 (is-normal-normal-core-Subgroup x (y , u) z) = transpose-eq-conjugation-Group' G ( ( inv (compute-conjugation-mul-Group G (inv-Group G x) z _)) ∙ ( pr2 (u _))) normal-core-Subgroup : Normal-Subgroup (l1 ⊔ l2) G pr1 normal-core-Subgroup = subgroup-normal-core-Subgroup pr2 normal-core-Subgroup = is-normal-normal-core-Subgroup is-contained-in-subgroup-normal-core-Subgroup : leq-Subgroup G subgroup-normal-core-Subgroup H is-contained-in-subgroup-normal-core-Subgroup x h = is-closed-under-eq-Subgroup G H ( is-in-subgroup-inclusion-Subgroup G H (pr1 (h (unit-Group G)))) ( ( inv ( compute-conjugation-unit-Group G ( inclusion-Subgroup G H (pr1 (h (unit-Group G)))))) ∙ ( pr2 (h (unit-Group G)))) forward-implication-is-normal-core-normal-core-Subgroup : {l : Level} (N : Normal-Subgroup l G) → leq-Subgroup G (subgroup-Normal-Subgroup G N) H → leq-Normal-Subgroup G N normal-core-Subgroup pr1 ( pr1 ( forward-implication-is-normal-core-normal-core-Subgroup N u x n y)) = conjugation-Group G (inv-Group G y) x pr2 ( pr1 ( forward-implication-is-normal-core-normal-core-Subgroup N u x n y)) = u ( conjugation-Group G (inv-Group G y) x) ( (is-normal-Normal-Subgroup G N (inv-Group G y) x n)) pr2 (forward-implication-is-normal-core-normal-core-Subgroup N u x n y) = is-section-conjugation-inv-Group G y x backward-implication-is-normal-core-normal-core-Subgroup : {l : Level} (N : Normal-Subgroup l G) → leq-Normal-Subgroup G N normal-core-Subgroup → leq-Subgroup G (subgroup-Normal-Subgroup G N) H backward-implication-is-normal-core-normal-core-Subgroup N = transitive-leq-Subgroup G ( subgroup-Normal-Subgroup G N) ( subgroup-normal-core-Subgroup) ( H) ( is-contained-in-subgroup-normal-core-Subgroup) is-normal-core-normal-core-Subgroup : is-normal-core-Subgroup G H normal-core-Subgroup pr1 (is-normal-core-normal-core-Subgroup N) = forward-implication-is-normal-core-normal-core-Subgroup N pr2 (is-normal-core-normal-core-Subgroup N) = backward-implication-is-normal-core-normal-core-Subgroup N
The normal core Galois connection
module _ {l1 : Level} (G : Group l1) where preserves-order-normal-core-Subgroup : {l2 l3 : Level} (H : Subgroup l2 G) (K : Subgroup l3 G) → leq-Subgroup G H K → leq-Normal-Subgroup G ( normal-core-Subgroup G H) ( normal-core-Subgroup G K) preserves-order-normal-core-Subgroup H K u = forward-implication-is-normal-core-normal-core-Subgroup G K ( normal-core-Subgroup G H) ( transitive-leq-Subgroup G ( subgroup-normal-core-Subgroup G H) ( H) ( K) ( u) ( is-contained-in-subgroup-normal-core-Subgroup G H)) normal-core-subgroup-hom-Large-Poset : hom-Large-Poset ( λ l2 → l1 ⊔ l2) ( Subgroup-Large-Poset G) ( Normal-Subgroup-Large-Poset G) normal-core-subgroup-hom-Large-Poset = make-hom-Large-Preorder ( normal-core-Subgroup G) ( preserves-order-normal-core-Subgroup) normal-core-subgroup-Galois-Connection : galois-connection-Large-Poset ( λ l → l) ( λ l2 → l1 ⊔ l2) ( Normal-Subgroup-Large-Poset G) ( Subgroup-Large-Poset G) lower-adjoint-galois-connection-Large-Poset normal-core-subgroup-Galois-Connection = subgroup-normal-subgroup-hom-Large-Poset G upper-adjoint-galois-connection-Large-Poset normal-core-subgroup-Galois-Connection = normal-core-subgroup-hom-Large-Poset adjoint-relation-galois-connection-Large-Poset normal-core-subgroup-Galois-Connection N H = is-normal-core-normal-core-Subgroup G H N
See also
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-19. Fredrik Bakke. Level-universe compatibility patch (#862).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).