Opposite large preorders
Content created by Fredrik Bakke.
Created on 2024-11-20.
Last modified on 2024-11-20.
module order-theory.opposite-large-preorders where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.homotopies open import foundation.identity-types open import foundation.large-identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import order-theory.large-preorders open import order-theory.order-preserving-maps-large-preorders
Idea
Let X
be a large preorder, its
opposite¶
Xᵒᵖ
is given by reversing the relation.
Definition
The opposite large preorder
module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Preorder α β) where type-opposite-Large-Preorder : (l : Level) → UU (α l) type-opposite-Large-Preorder = type-Large-Preorder P leq-prop-opposite-Large-Preorder : {l1 l2 : Level} (X : type-opposite-Large-Preorder l1) (Y : type-opposite-Large-Preorder l2) → Prop (β l2 l1) leq-prop-opposite-Large-Preorder X Y = leq-prop-Large-Preorder P Y X leq-opposite-Large-Preorder : {l1 l2 : Level} (X : type-opposite-Large-Preorder l1) (Y : type-opposite-Large-Preorder l2) → UU (β l2 l1) leq-opposite-Large-Preorder X Y = type-Prop (leq-prop-opposite-Large-Preorder X Y) transitive-leq-opposite-Large-Preorder : {l1 l2 l3 : Level} (X : type-opposite-Large-Preorder l1) (Y : type-opposite-Large-Preorder l2) (Z : type-opposite-Large-Preorder l3) → leq-opposite-Large-Preorder Y Z → leq-opposite-Large-Preorder X Y → leq-opposite-Large-Preorder X Z transitive-leq-opposite-Large-Preorder X Y Z g f = transitive-leq-Large-Preorder P Z Y X f g refl-leq-opposite-Large-Preorder : {l1 : Level} (X : type-opposite-Large-Preorder l1) → leq-opposite-Large-Preorder X X refl-leq-opposite-Large-Preorder = refl-leq-Large-Preorder P opposite-Large-Preorder : Large-Preorder α (λ l1 l2 → β l2 l1) opposite-Large-Preorder = make-Large-Preorder type-opposite-Large-Preorder leq-prop-opposite-Large-Preorder refl-leq-opposite-Large-Preorder transitive-leq-opposite-Large-Preorder
The opposite functorial action on order preserving maps of large posets
module _ {αP αQ : Level → Level} {βP βQ : Level → Level → Level} {γ : Level → Level} {P : Large-Preorder αP βP} {Q : Large-Preorder αQ βQ} where opposite-hom-Large-Preorder : hom-Large-Preorder γ P Q → hom-Large-Preorder γ (opposite-Large-Preorder P) (opposite-Large-Preorder Q) opposite-hom-Large-Preorder f = make-hom-Large-Preorder ( map-hom-Large-Preorder f) ( λ x y p → preserves-order-hom-Large-Preorder f y x p)
Properties
The opposite large preorder construction is a strict involution
module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Preorder α β) where is-involution-opposite-Large-Preorder : opposite-Large-Preorder (opposite-Large-Preorder P) =ω P is-involution-opposite-Large-Preorder = reflω module _ {αP αQ : Level → Level} {βP βQ : Level → Level → Level} {γ : Level → Level} (P : Large-Preorder αP βP) (Q : Large-Preorder αQ βQ) (f : hom-Large-Preorder γ P Q) where is-involution-opposite-hom-Large-Preorder : opposite-hom-Large-Preorder (opposite-hom-Large-Preorder f) =ω f is-involution-opposite-hom-Large-Preorder = reflω
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).