Opposite large preorders

Content created by Fredrik Bakke.

Created on 2024-11-20.
Last modified on 2024-11-20.

module order-theory.opposite-large-preorders where
Imports
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.homotopies
open import foundation.identity-types
open import foundation.large-identity-types
open import foundation.propositions
open import foundation.sets
open import foundation.universe-levels

open import order-theory.large-preorders
open import order-theory.order-preserving-maps-large-preorders

Idea

Let X be a large preorder, its opposite Xᵒᵖ is given by reversing the relation.

Definition

The opposite large preorder

module _
  {α : Level  Level} {β : Level  Level  Level} (P : Large-Preorder α β)
  where

  type-opposite-Large-Preorder : (l : Level)  UU (α l)
  type-opposite-Large-Preorder = type-Large-Preorder P

  leq-prop-opposite-Large-Preorder :
    {l1 l2 : Level}
    (X : type-opposite-Large-Preorder l1)
    (Y : type-opposite-Large-Preorder l2)  Prop (β l2 l1)
  leq-prop-opposite-Large-Preorder X Y = leq-prop-Large-Preorder P Y X

  leq-opposite-Large-Preorder :
    {l1 l2 : Level}
    (X : type-opposite-Large-Preorder l1)
    (Y : type-opposite-Large-Preorder l2)  UU (β l2 l1)
  leq-opposite-Large-Preorder X Y =
    type-Prop (leq-prop-opposite-Large-Preorder X Y)

  transitive-leq-opposite-Large-Preorder :
    {l1 l2 l3 : Level}
    (X : type-opposite-Large-Preorder l1)
    (Y : type-opposite-Large-Preorder l2)
    (Z : type-opposite-Large-Preorder l3) 
    leq-opposite-Large-Preorder Y Z 
    leq-opposite-Large-Preorder X Y 
    leq-opposite-Large-Preorder X Z
  transitive-leq-opposite-Large-Preorder X Y Z g f =
    transitive-leq-Large-Preorder P Z Y X f g

  refl-leq-opposite-Large-Preorder :
    {l1 : Level} (X : type-opposite-Large-Preorder l1) 
    leq-opposite-Large-Preorder X X
  refl-leq-opposite-Large-Preorder = refl-leq-Large-Preorder P

  opposite-Large-Preorder : Large-Preorder α  l1 l2  β l2 l1)
  opposite-Large-Preorder =
    make-Large-Preorder
      type-opposite-Large-Preorder
      leq-prop-opposite-Large-Preorder
      refl-leq-opposite-Large-Preorder
      transitive-leq-opposite-Large-Preorder

The opposite functorial action on order preserving maps of large posets

module _
  {αP αQ : Level  Level} {βP βQ : Level  Level  Level} {γ : Level  Level}
  {P : Large-Preorder αP βP} {Q : Large-Preorder αQ βQ}
  where

  opposite-hom-Large-Preorder :
    hom-Large-Preorder γ P Q 
    hom-Large-Preorder γ (opposite-Large-Preorder P) (opposite-Large-Preorder Q)
  opposite-hom-Large-Preorder f =
    make-hom-Large-Preorder
      ( map-hom-Large-Preorder f)
      ( λ x y p  preserves-order-hom-Large-Preorder f y x p)

Properties

The opposite large preorder construction is a strict involution

module _
  {α : Level  Level} {β : Level  Level  Level} (P : Large-Preorder α β)
  where

  is-involution-opposite-Large-Preorder :
    opposite-Large-Preorder (opposite-Large-Preorder P) =ω P
  is-involution-opposite-Large-Preorder = reflω

module _
  {αP αQ : Level  Level} {βP βQ : Level  Level  Level} {γ : Level  Level}
  (P : Large-Preorder αP βP) (Q : Large-Preorder αQ βQ)
  (f : hom-Large-Preorder γ P Q)
  where

  is-involution-opposite-hom-Large-Preorder :
    opposite-hom-Large-Preorder (opposite-hom-Large-Preorder f) =ω f
  is-involution-opposite-hom-Large-Preorder = reflω

Recent changes