The Ackermann function
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-04-08.
Last modified on 2024-10-24.
module elementary-number-theory.ackermann-function where
Idea
The Ackermann-Péter function¶ is a fast growing binary operation on the natural numbers.
Definition
The Ackermann-Péter function
ackermann-péter-ℕ : ℕ → ℕ → ℕ ackermann-péter-ℕ zero-ℕ n = succ-ℕ n ackermann-péter-ℕ (succ-ℕ m) zero-ℕ = ackermann-péter-ℕ m 1 ackermann-péter-ℕ (succ-ℕ m) (succ-ℕ n) = ackermann-péter-ℕ m (ackermann-péter-ℕ (succ-ℕ m) n)
The simplified Ackermann function
simplified-ackermann-ℕ : ℕ → ℕ simplified-ackermann-ℕ n = ackermann-péter-ℕ n n
External links
- Ackermann function at Mathswitch
Recent changes
- 2024-10-24. Egbert Rijke. Move OEIS to literature (#1208).
- 2024-10-16. Fredrik Bakke. Some links in elementary number theory (#1199).
- 2023-04-08. Egbert Rijke. Refactoring elementary number theory files (#546).