Iterated deloopings of pointed types
Content created by Egbert Rijke.
Created on 2024-03-23.
Last modified on 2024-03-23.
module higher-group-theory.iterated-deloopings-of-pointed-types where
Imports
open import elementary-number-theory.natural-numbers open import foundation.cartesian-product-types open import foundation.connected-types open import foundation.dependent-pair-types open import foundation.truncation-levels open import foundation.universe-levels open import structured-types.pointed-equivalences open import structured-types.pointed-types open import synthetic-homotopy-theory.iterated-loop-spaces
Idea
The type of n
-fold deloopings¶ of
a pointed type X
is the type
Σ (Y : Pointed-Type), is-connected (n-1) Y × (Ωⁿ X ≃∗ Y).
Here, the pointed type Ωⁿ X
is the n
-th
iterated loop space of X
.
Definitions
The type of n
-fold deloopings of a pointed type, with respect to a universe level
module _ {l1 : Level} (l2 : Level) (n : ℕ) (X : Pointed-Type l1) where iterated-delooping-Level : UU (l1 ⊔ lsuc l2) iterated-delooping-Level = Σ ( Pointed-Type l2) ( λ Y → ( is-connected (truncation-level-minus-one-ℕ n) (type-Pointed-Type Y)) × ( iterated-loop-space n X ≃∗ Y))
The type of n
-fold deloopings of a pointed type
module _ {l1 : Level} (n : ℕ) (X : Pointed-Type l1) where iterated-delooping : UU (lsuc l1) iterated-delooping = iterated-delooping-Level l1 n X
Recent changes
- 2024-03-23. Egbert Rijke. Deloopings and Eilenberg-Mac Lane spaces (#1079).