Large function precategories
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-09-28.
Last modified on 2024-03-11.
module category-theory.large-function-precategories where
Imports
open import category-theory.dependent-products-of-large-precategories open import category-theory.isomorphisms-in-large-precategories open import category-theory.large-precategories open import foundation.equivalences open import foundation.identity-types open import foundation.sets open import foundation.strictly-involutive-identity-types open import foundation.universe-levels
Idea
Given a type I
and a
large precategory C
, the large
function pre-category Cᴵ
consists of I
-indexed families of objects of C
and I
-indexed families of morphisms between them.
Definition
Large function precategories
module _ {l1 : Level} {α : Level → Level} {β : Level → Level → Level} (I : UU l1) (C : Large-Precategory α β) where Large-Function-Precategory : Large-Precategory (λ l2 → l1 ⊔ α l2) (λ l2 l3 → l1 ⊔ β l2 l3) Large-Function-Precategory = Π-Large-Precategory I (λ _ → C) obj-Large-Function-Precategory : (l2 : Level) → UU (l1 ⊔ α l2) obj-Large-Function-Precategory = obj-Π-Large-Precategory I (λ _ → C) hom-set-Large-Function-Precategory : {l2 l3 : Level} → obj-Large-Function-Precategory l2 → obj-Large-Function-Precategory l3 → Set (l1 ⊔ β l2 l3) hom-set-Large-Function-Precategory = hom-set-Π-Large-Precategory I (λ _ → C) hom-Large-Function-Precategory : {l2 l3 : Level} → obj-Large-Function-Precategory l2 → obj-Large-Function-Precategory l3 → UU (l1 ⊔ β l2 l3) hom-Large-Function-Precategory = hom-Π-Large-Precategory I (λ _ → C) comp-hom-Large-Function-Precategory : {l2 l3 l4 : Level} {x : obj-Large-Function-Precategory l2} {y : obj-Large-Function-Precategory l3} {z : obj-Large-Function-Precategory l4} → hom-Large-Function-Precategory y z → hom-Large-Function-Precategory x y → hom-Large-Function-Precategory x z comp-hom-Large-Function-Precategory = comp-hom-Π-Large-Precategory I (λ _ → C) associative-comp-hom-Large-Function-Precategory : {l2 l3 l4 l5 : Level} {x : obj-Large-Function-Precategory l2} {y : obj-Large-Function-Precategory l3} {z : obj-Large-Function-Precategory l4} {w : obj-Large-Function-Precategory l5} → (h : hom-Large-Function-Precategory z w) (g : hom-Large-Function-Precategory y z) (f : hom-Large-Function-Precategory x y) → comp-hom-Large-Function-Precategory ( comp-hom-Large-Function-Precategory h g) ( f) = comp-hom-Large-Function-Precategory ( h) ( comp-hom-Large-Function-Precategory g f) associative-comp-hom-Large-Function-Precategory = associative-comp-hom-Π-Large-Precategory I (λ _ → C) involutive-eq-associative-comp-hom-Large-Function-Precategory : {l2 l3 l4 l5 : Level} {x : obj-Large-Function-Precategory l2} {y : obj-Large-Function-Precategory l3} {z : obj-Large-Function-Precategory l4} {w : obj-Large-Function-Precategory l5} → (h : hom-Large-Function-Precategory z w) (g : hom-Large-Function-Precategory y z) (f : hom-Large-Function-Precategory x y) → comp-hom-Large-Function-Precategory ( comp-hom-Large-Function-Precategory h g) ( f) =ⁱ comp-hom-Large-Function-Precategory ( h) ( comp-hom-Large-Function-Precategory g f) involutive-eq-associative-comp-hom-Large-Function-Precategory = involutive-eq-associative-comp-hom-Π-Large-Precategory I (λ _ → C) id-hom-Large-Function-Precategory : {l2 : Level} {x : obj-Large-Function-Precategory l2} → hom-Large-Function-Precategory x x id-hom-Large-Function-Precategory = id-hom-Π-Large-Precategory I (λ _ → C) left-unit-law-comp-hom-Large-Function-Precategory : {l2 l3 : Level} {x : obj-Large-Function-Precategory l2} {y : obj-Large-Function-Precategory l3} (f : hom-Large-Function-Precategory x y) → comp-hom-Large-Function-Precategory id-hom-Large-Function-Precategory f = f left-unit-law-comp-hom-Large-Function-Precategory = left-unit-law-comp-hom-Π-Large-Precategory I (λ _ → C) right-unit-law-comp-hom-Large-Function-Precategory : {l2 l3 : Level} {x : obj-Large-Function-Precategory l2} {y : obj-Large-Function-Precategory l3} (f : hom-Large-Function-Precategory x y) → comp-hom-Large-Function-Precategory f id-hom-Large-Function-Precategory = f right-unit-law-comp-hom-Large-Function-Precategory = right-unit-law-comp-hom-Π-Large-Precategory I (λ _ → C)
Properties
Isomorphisms in the dependent product precategory are fiberwise isomorphisms
module _ {l1 l2 l3 : Level} {α : Level → Level} {β : Level → Level → Level} (I : UU l1) (C : Large-Precategory α β) {x : obj-Large-Function-Precategory I C l2} {y : obj-Large-Function-Precategory I C l3} where is-fiberwise-iso-is-iso-Large-Function-Precategory : (f : hom-Large-Function-Precategory I C x y) → is-iso-Large-Precategory (Large-Function-Precategory I C) f → (i : I) → is-iso-Large-Precategory C (f i) is-fiberwise-iso-is-iso-Large-Function-Precategory = is-fiberwise-iso-is-iso-Π-Large-Precategory I (λ _ → C) fiberwise-iso-iso-Large-Function-Precategory : iso-Large-Precategory (Large-Function-Precategory I C) x y → (i : I) → iso-Large-Precategory C (x i) (y i) fiberwise-iso-iso-Large-Function-Precategory = fiberwise-iso-iso-Π-Large-Precategory I (λ _ → C) is-iso-is-fiberwise-iso-Large-Function-Precategory : (f : hom-Large-Function-Precategory I C x y) → ((i : I) → is-iso-Large-Precategory C (f i)) → is-iso-Large-Precategory (Large-Function-Precategory I C) f is-iso-is-fiberwise-iso-Large-Function-Precategory = is-iso-is-fiberwise-iso-Π-Large-Precategory I (λ _ → C) iso-fiberwise-iso-Large-Function-Precategory : ((i : I) → iso-Large-Precategory C (x i) (y i)) → iso-Large-Precategory (Large-Function-Precategory I C) x y iso-fiberwise-iso-Large-Function-Precategory = iso-fiberwise-iso-Π-Large-Precategory I (λ _ → C) is-equiv-is-fiberwise-iso-is-iso-Large-Function-Precategory : (f : hom-Large-Function-Precategory I C x y) → is-equiv (is-fiberwise-iso-is-iso-Large-Function-Precategory f) is-equiv-is-fiberwise-iso-is-iso-Large-Function-Precategory = is-equiv-is-fiberwise-iso-is-iso-Π-Large-Precategory I (λ _ → C) equiv-is-fiberwise-iso-is-iso-Large-Function-Precategory : (f : hom-Large-Function-Precategory I C x y) → ( is-iso-Large-Precategory (Large-Function-Precategory I C) f) ≃ ( (i : I) → is-iso-Large-Precategory C (f i)) equiv-is-fiberwise-iso-is-iso-Large-Function-Precategory = equiv-is-fiberwise-iso-is-iso-Π-Large-Precategory I (λ _ → C) is-equiv-is-iso-is-fiberwise-iso-Large-Function-Precategory : (f : hom-Large-Function-Precategory I C x y) → is-equiv (is-iso-is-fiberwise-iso-Large-Function-Precategory f) is-equiv-is-iso-is-fiberwise-iso-Large-Function-Precategory = is-equiv-is-iso-is-fiberwise-iso-Π-Large-Precategory I (λ _ → C) equiv-is-iso-is-fiberwise-iso-Large-Function-Precategory : ( f : hom-Large-Function-Precategory I C x y) → ( (i : I) → is-iso-Large-Precategory C (f i)) ≃ ( is-iso-Large-Precategory (Large-Function-Precategory I C) f) equiv-is-iso-is-fiberwise-iso-Large-Function-Precategory = equiv-is-iso-is-fiberwise-iso-Π-Large-Precategory I (λ _ → C) is-equiv-fiberwise-iso-iso-Large-Function-Precategory : is-equiv fiberwise-iso-iso-Large-Function-Precategory is-equiv-fiberwise-iso-iso-Large-Function-Precategory = is-equiv-fiberwise-iso-iso-Π-Large-Precategory I (λ _ → C) equiv-fiberwise-iso-iso-Large-Function-Precategory : ( iso-Large-Precategory (Large-Function-Precategory I C) x y) ≃ ( (i : I) → iso-Large-Precategory C (x i) (y i)) equiv-fiberwise-iso-iso-Large-Function-Precategory = equiv-fiberwise-iso-iso-Π-Large-Precategory I (λ _ → C) is-equiv-iso-fiberwise-iso-Large-Function-Precategory : is-equiv iso-fiberwise-iso-Large-Function-Precategory is-equiv-iso-fiberwise-iso-Large-Function-Precategory = is-equiv-iso-fiberwise-iso-Π-Large-Precategory I (λ _ → C) equiv-iso-fiberwise-iso-Large-Function-Precategory : ( (i : I) → iso-Large-Precategory C (x i) (y i)) ≃ ( iso-Large-Precategory (Large-Function-Precategory I C) x y) equiv-iso-fiberwise-iso-Large-Function-Precategory = equiv-iso-fiberwise-iso-Π-Large-Precategory I (λ _ → C)
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-09-28. Egbert Rijke and Fredrik Bakke. Cyclic types (#800).