Nonunital precategories

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2023-10-20.
Last modified on 2024-03-11.

module category-theory.nonunital-precategories where
Imports
open import category-theory.composition-operations-on-binary-families-of-sets
open import category-theory.set-magmoids

open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.sets
open import foundation.strictly-involutive-identity-types
open import foundation.truncated-types
open import foundation.truncation-levels
open import foundation.universe-levels

Idea

A nonunital precategory is a precategory that may not have identity morphisms. In other words, it is an associative composition operation on binary families of sets. Such a structure may also be referred to as a semiprecategory.

Perhaps surprisingly, there is at most one way to equip nonunital precategories with identity morphisms, so precategories form a subtype of nonunital precategories.

Definition

The type of nonunital precategories

Nonunital-Precategory :
  (l1 l2 : Level)  UU (lsuc l1  lsuc l2)
Nonunital-Precategory l1 l2 =
  Σ ( UU l1)
    ( λ A 
      Σ ( A  A  Set l2)
        ( associative-composition-operation-binary-family-Set))

module _
  {l1 l2 : Level} (C : Nonunital-Precategory l1 l2)
  where

  obj-Nonunital-Precategory : UU l1
  obj-Nonunital-Precategory = pr1 C

  hom-set-Nonunital-Precategory : (x y : obj-Nonunital-Precategory)  Set l2
  hom-set-Nonunital-Precategory = pr1 (pr2 C)

  hom-Nonunital-Precategory : (x y : obj-Nonunital-Precategory)  UU l2
  hom-Nonunital-Precategory x y = type-Set (hom-set-Nonunital-Precategory x y)

  is-set-hom-Nonunital-Precategory :
    (x y : obj-Nonunital-Precategory)  is-set (hom-Nonunital-Precategory x y)
  is-set-hom-Nonunital-Precategory x y =
    is-set-type-Set (hom-set-Nonunital-Precategory x y)

  associative-composition-operation-Nonunital-Precategory :
    associative-composition-operation-binary-family-Set
      hom-set-Nonunital-Precategory
  associative-composition-operation-Nonunital-Precategory = pr2 (pr2 C)

  comp-hom-Nonunital-Precategory :
    {x y z : obj-Nonunital-Precategory} 
    hom-Nonunital-Precategory y z 
    hom-Nonunital-Precategory x y 
    hom-Nonunital-Precategory x z
  comp-hom-Nonunital-Precategory =
    comp-hom-associative-composition-operation-binary-family-Set
      ( hom-set-Nonunital-Precategory)
      ( associative-composition-operation-Nonunital-Precategory)

  comp-hom-Nonunital-Precategory' :
    {x y z : obj-Nonunital-Precategory} 
    hom-Nonunital-Precategory x y 
    hom-Nonunital-Precategory y z 
    hom-Nonunital-Precategory x z
  comp-hom-Nonunital-Precategory' f g = comp-hom-Nonunital-Precategory g f

  associative-comp-hom-Nonunital-Precategory :
    {x y z w : obj-Nonunital-Precategory}
    (h : hom-Nonunital-Precategory z w)
    (g : hom-Nonunital-Precategory y z)
    (f : hom-Nonunital-Precategory x y) 
    comp-hom-Nonunital-Precategory (comp-hom-Nonunital-Precategory h g) f 
    comp-hom-Nonunital-Precategory h (comp-hom-Nonunital-Precategory g f)
  associative-comp-hom-Nonunital-Precategory =
    witness-associative-composition-operation-binary-family-Set
      ( hom-set-Nonunital-Precategory)
      ( associative-composition-operation-Nonunital-Precategory)

  involutive-eq-associative-comp-hom-Nonunital-Precategory :
    {x y z w : obj-Nonunital-Precategory}
    (h : hom-Nonunital-Precategory z w)
    (g : hom-Nonunital-Precategory y z)
    (f : hom-Nonunital-Precategory x y) 
    comp-hom-Nonunital-Precategory (comp-hom-Nonunital-Precategory h g) f =ⁱ
    comp-hom-Nonunital-Precategory h (comp-hom-Nonunital-Precategory g f)
  involutive-eq-associative-comp-hom-Nonunital-Precategory =
    involutive-eq-associative-composition-operation-binary-family-Set
      ( hom-set-Nonunital-Precategory)
      ( associative-composition-operation-Nonunital-Precategory)

The underlying set-magmoid of a nonunital precategory

module _
  {l1 l2 : Level} (C : Nonunital-Precategory l1 l2)
  where

  set-magmoid-Nonunital-Precategory : Set-Magmoid l1 l2
  pr1 set-magmoid-Nonunital-Precategory = obj-Nonunital-Precategory C
  pr1 (pr2 set-magmoid-Nonunital-Precategory) = hom-set-Nonunital-Precategory C
  pr2 (pr2 set-magmoid-Nonunital-Precategory) = comp-hom-Nonunital-Precategory C

The total hom-type of a nonunital precategory

total-hom-Nonunital-Precategory :
  {l1 l2 : Level} (C : Nonunital-Precategory l1 l2)  UU (l1  l2)
total-hom-Nonunital-Precategory C =
  Σ ( obj-Nonunital-Precategory C)
    ( λ x  Σ (obj-Nonunital-Precategory C) (hom-Nonunital-Precategory C x))

obj-total-hom-Nonunital-Precategory :
  {l1 l2 : Level} (C : Nonunital-Precategory l1 l2) 
  total-hom-Nonunital-Precategory C 
  obj-Nonunital-Precategory C × obj-Nonunital-Precategory C
pr1 (obj-total-hom-Nonunital-Precategory C (x , y , f)) = x
pr2 (obj-total-hom-Nonunital-Precategory C (x , y , f)) = y

Pre- and postcomposition by a morphism

module _
  {l1 l2 : Level} (C : Nonunital-Precategory l1 l2)
  {x y : obj-Nonunital-Precategory C}
  (f : hom-Nonunital-Precategory C x y)
  (z : obj-Nonunital-Precategory C)
  where

  precomp-hom-Nonunital-Precategory :
    hom-Nonunital-Precategory C y z  hom-Nonunital-Precategory C x z
  precomp-hom-Nonunital-Precategory g = comp-hom-Nonunital-Precategory C g f

  postcomp-hom-Nonunital-Precategory :
    hom-Nonunital-Precategory C z x  hom-Nonunital-Precategory C z y
  postcomp-hom-Nonunital-Precategory = comp-hom-Nonunital-Precategory C f

The predicate on nonunital precategories of being unital

Proof: To show that unitality is a proposition, suppose e e' : (x : A) → hom-set x x are both right and left units with regard to composition. It is enough to show that e = e' since the right and left unit laws are propositions (because all hom-types are sets). By function extensionality, it is enough to show that e x = e' x for all x : A. But by the unit laws we have the following chain of equalities: e x = (e' x) ∘ (e x) = e' x.

module _
  {l1 l2 : Level} (C : Nonunital-Precategory l1 l2)
  where

  is-unital-Nonunital-Precategory : UU (l1  l2)
  is-unital-Nonunital-Precategory =
    is-unital-composition-operation-binary-family-Set
      ( hom-set-Nonunital-Precategory C)
      ( comp-hom-Nonunital-Precategory C)

  is-prop-is-unital-Nonunital-Precategory :
    is-prop
      ( is-unital-composition-operation-binary-family-Set
        ( hom-set-Nonunital-Precategory C)
        ( comp-hom-Nonunital-Precategory C))
  is-prop-is-unital-Nonunital-Precategory =
    is-prop-is-unital-composition-operation-binary-family-Set
      ( hom-set-Nonunital-Precategory C)
      ( comp-hom-Nonunital-Precategory C)

  is-unital-prop-Nonunital-Precategory : Prop (l1  l2)
  is-unital-prop-Nonunital-Precategory =
    is-unital-prop-composition-operation-binary-family-Set
      ( hom-set-Nonunital-Precategory C)
      ( comp-hom-Nonunital-Precategory C)

Properties

If the objects of a nonunital precategory are k-truncated for nonnegative k, the total hom-type is k-truncated

module _
  {l1 l2 : Level} {k : 𝕋} (C : Nonunital-Precategory l1 l2)
  where

  is-trunc-total-hom-is-trunc-obj-Nonunital-Precategory :
    is-trunc (succ-𝕋 (succ-𝕋 k)) (obj-Nonunital-Precategory C) 
    is-trunc (succ-𝕋 (succ-𝕋 k)) (total-hom-Nonunital-Precategory C)
  is-trunc-total-hom-is-trunc-obj-Nonunital-Precategory =
    is-trunc-total-hom-is-trunc-obj-Set-Magmoid
      ( set-magmoid-Nonunital-Precategory C)

  total-hom-truncated-type-is-trunc-obj-Nonunital-Precategory :
    is-trunc (succ-𝕋 (succ-𝕋 k)) (obj-Nonunital-Precategory C) 
    Truncated-Type (l1  l2) (succ-𝕋 (succ-𝕋 k))
  total-hom-truncated-type-is-trunc-obj-Nonunital-Precategory =
    total-hom-truncated-type-is-trunc-obj-Set-Magmoid
      ( set-magmoid-Nonunital-Precategory C)

Comments

As discussed in Semicategories at Lab, it seems that a nonunital precategory should be the underlying nonunital precategory of a category if and only if the projection map

  pr1 : (Σ (a : A) Σ (f : hom a a) (is-neutral f)) → A

is an equivalence.

We can also define one notion of "isomorphism" as those morphisms that induce equivalences of hom-sets by pre- and postcomposition.

Recent changes