Nonunital precategories
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-10-20.
Last modified on 2024-03-11.
module category-theory.nonunital-precategories where
Imports
open import category-theory.composition-operations-on-binary-families-of-sets open import category-theory.set-magmoids open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.strictly-involutive-identity-types open import foundation.truncated-types open import foundation.truncation-levels open import foundation.universe-levels
Idea
A nonunital precategory¶ is a precategory that may not have identity morphisms. In other words, it is an associative composition operation on binary families of sets. Such a structure may also be referred to as a semiprecategory.
Perhaps surprisingly, there is at most one way to equip nonunital precategories with identity morphisms, so precategories form a subtype of nonunital precategories.
Definition
The type of nonunital precategories
Nonunital-Precategory : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Nonunital-Precategory l1 l2 = Σ ( UU l1) ( λ A → Σ ( A → A → Set l2) ( associative-composition-operation-binary-family-Set)) module _ {l1 l2 : Level} (C : Nonunital-Precategory l1 l2) where obj-Nonunital-Precategory : UU l1 obj-Nonunital-Precategory = pr1 C hom-set-Nonunital-Precategory : (x y : obj-Nonunital-Precategory) → Set l2 hom-set-Nonunital-Precategory = pr1 (pr2 C) hom-Nonunital-Precategory : (x y : obj-Nonunital-Precategory) → UU l2 hom-Nonunital-Precategory x y = type-Set (hom-set-Nonunital-Precategory x y) is-set-hom-Nonunital-Precategory : (x y : obj-Nonunital-Precategory) → is-set (hom-Nonunital-Precategory x y) is-set-hom-Nonunital-Precategory x y = is-set-type-Set (hom-set-Nonunital-Precategory x y) associative-composition-operation-Nonunital-Precategory : associative-composition-operation-binary-family-Set hom-set-Nonunital-Precategory associative-composition-operation-Nonunital-Precategory = pr2 (pr2 C) comp-hom-Nonunital-Precategory : {x y z : obj-Nonunital-Precategory} → hom-Nonunital-Precategory y z → hom-Nonunital-Precategory x y → hom-Nonunital-Precategory x z comp-hom-Nonunital-Precategory = comp-hom-associative-composition-operation-binary-family-Set ( hom-set-Nonunital-Precategory) ( associative-composition-operation-Nonunital-Precategory) comp-hom-Nonunital-Precategory' : {x y z : obj-Nonunital-Precategory} → hom-Nonunital-Precategory x y → hom-Nonunital-Precategory y z → hom-Nonunital-Precategory x z comp-hom-Nonunital-Precategory' f g = comp-hom-Nonunital-Precategory g f associative-comp-hom-Nonunital-Precategory : {x y z w : obj-Nonunital-Precategory} (h : hom-Nonunital-Precategory z w) (g : hom-Nonunital-Precategory y z) (f : hom-Nonunital-Precategory x y) → comp-hom-Nonunital-Precategory (comp-hom-Nonunital-Precategory h g) f = comp-hom-Nonunital-Precategory h (comp-hom-Nonunital-Precategory g f) associative-comp-hom-Nonunital-Precategory = witness-associative-composition-operation-binary-family-Set ( hom-set-Nonunital-Precategory) ( associative-composition-operation-Nonunital-Precategory) involutive-eq-associative-comp-hom-Nonunital-Precategory : {x y z w : obj-Nonunital-Precategory} (h : hom-Nonunital-Precategory z w) (g : hom-Nonunital-Precategory y z) (f : hom-Nonunital-Precategory x y) → comp-hom-Nonunital-Precategory (comp-hom-Nonunital-Precategory h g) f =ⁱ comp-hom-Nonunital-Precategory h (comp-hom-Nonunital-Precategory g f) involutive-eq-associative-comp-hom-Nonunital-Precategory = involutive-eq-associative-composition-operation-binary-family-Set ( hom-set-Nonunital-Precategory) ( associative-composition-operation-Nonunital-Precategory)
The underlying set-magmoid of a nonunital precategory
module _ {l1 l2 : Level} (C : Nonunital-Precategory l1 l2) where set-magmoid-Nonunital-Precategory : Set-Magmoid l1 l2 pr1 set-magmoid-Nonunital-Precategory = obj-Nonunital-Precategory C pr1 (pr2 set-magmoid-Nonunital-Precategory) = hom-set-Nonunital-Precategory C pr2 (pr2 set-magmoid-Nonunital-Precategory) = comp-hom-Nonunital-Precategory C
The total hom-type of a nonunital precategory
total-hom-Nonunital-Precategory : {l1 l2 : Level} (C : Nonunital-Precategory l1 l2) → UU (l1 ⊔ l2) total-hom-Nonunital-Precategory C = Σ ( obj-Nonunital-Precategory C) ( λ x → Σ (obj-Nonunital-Precategory C) (hom-Nonunital-Precategory C x)) obj-total-hom-Nonunital-Precategory : {l1 l2 : Level} (C : Nonunital-Precategory l1 l2) → total-hom-Nonunital-Precategory C → obj-Nonunital-Precategory C × obj-Nonunital-Precategory C pr1 (obj-total-hom-Nonunital-Precategory C (x , y , f)) = x pr2 (obj-total-hom-Nonunital-Precategory C (x , y , f)) = y
Pre- and postcomposition by a morphism
module _ {l1 l2 : Level} (C : Nonunital-Precategory l1 l2) {x y : obj-Nonunital-Precategory C} (f : hom-Nonunital-Precategory C x y) (z : obj-Nonunital-Precategory C) where precomp-hom-Nonunital-Precategory : hom-Nonunital-Precategory C y z → hom-Nonunital-Precategory C x z precomp-hom-Nonunital-Precategory g = comp-hom-Nonunital-Precategory C g f postcomp-hom-Nonunital-Precategory : hom-Nonunital-Precategory C z x → hom-Nonunital-Precategory C z y postcomp-hom-Nonunital-Precategory = comp-hom-Nonunital-Precategory C f
The predicate on nonunital precategories of being unital
Proof: To show that unitality is a proposition, suppose
e e' : (x : A) → hom-set x x
are both right and left units with regard to
composition. It is enough to show that e = e'
since the right and left unit
laws are propositions (because all hom-types are sets). By function
extensionality, it is enough to show that e x = e' x
for all x : A
. But by
the unit laws we have the following chain of equalities:
e x = (e' x) ∘ (e x) = e' x.
module _ {l1 l2 : Level} (C : Nonunital-Precategory l1 l2) where is-unital-Nonunital-Precategory : UU (l1 ⊔ l2) is-unital-Nonunital-Precategory = is-unital-composition-operation-binary-family-Set ( hom-set-Nonunital-Precategory C) ( comp-hom-Nonunital-Precategory C) is-prop-is-unital-Nonunital-Precategory : is-prop ( is-unital-composition-operation-binary-family-Set ( hom-set-Nonunital-Precategory C) ( comp-hom-Nonunital-Precategory C)) is-prop-is-unital-Nonunital-Precategory = is-prop-is-unital-composition-operation-binary-family-Set ( hom-set-Nonunital-Precategory C) ( comp-hom-Nonunital-Precategory C) is-unital-prop-Nonunital-Precategory : Prop (l1 ⊔ l2) is-unital-prop-Nonunital-Precategory = is-unital-prop-composition-operation-binary-family-Set ( hom-set-Nonunital-Precategory C) ( comp-hom-Nonunital-Precategory C)
Properties
If the objects of a nonunital precategory are k
-truncated for nonnegative k
, the total hom-type is k
-truncated
module _ {l1 l2 : Level} {k : 𝕋} (C : Nonunital-Precategory l1 l2) where is-trunc-total-hom-is-trunc-obj-Nonunital-Precategory : is-trunc (succ-𝕋 (succ-𝕋 k)) (obj-Nonunital-Precategory C) → is-trunc (succ-𝕋 (succ-𝕋 k)) (total-hom-Nonunital-Precategory C) is-trunc-total-hom-is-trunc-obj-Nonunital-Precategory = is-trunc-total-hom-is-trunc-obj-Set-Magmoid ( set-magmoid-Nonunital-Precategory C) total-hom-truncated-type-is-trunc-obj-Nonunital-Precategory : is-trunc (succ-𝕋 (succ-𝕋 k)) (obj-Nonunital-Precategory C) → Truncated-Type (l1 ⊔ l2) (succ-𝕋 (succ-𝕋 k)) total-hom-truncated-type-is-trunc-obj-Nonunital-Precategory = total-hom-truncated-type-is-trunc-obj-Set-Magmoid ( set-magmoid-Nonunital-Precategory C)
Comments
As discussed in Semicategories at Lab, it seems that a nonunital precategory should be the underlying nonunital precategory of a category if and only if the projection map
pr1 : (Σ (a : A) Σ (f : hom a a) (is-neutral f)) → A
is an equivalence.
We can also define one notion of "isomorphism" as those morphisms that induce equivalences of hom-sets by pre- and postcomposition.
External links
- Semicategories at Lab
- Semigroupoid at Wikipedia
- semigroupoid at Wikidata
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-11-09. Fredrik Bakke. Typeset
nlab
as$n$Lab
(#911). - 2023-11-01. Fredrik Bakke. Fun with functors (#886).