Homomorphisms of commutative monoids
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-03-26.
Last modified on 2024-03-11.
module group-theory.homomorphisms-commutative-monoids where
Imports
open import foundation.equivalences open import foundation.identity-types open import foundation.sets open import foundation.torsorial-type-families open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.homomorphisms-monoids open import group-theory.homomorphisms-semigroups
Idea
Homomorphisms between two commutative monoids are homomorphisms between their underlying monoids.
Definition
Homomorphisms of commutative monoids
module _ {l1 l2 : Level} (M1 : Commutative-Monoid l1) (M2 : Commutative-Monoid l2) where hom-set-Commutative-Monoid : Set (l1 ⊔ l2) hom-set-Commutative-Monoid = hom-set-Monoid (monoid-Commutative-Monoid M1) (monoid-Commutative-Monoid M2) hom-Commutative-Monoid : UU (l1 ⊔ l2) hom-Commutative-Monoid = hom-Monoid ( monoid-Commutative-Monoid M1) ( monoid-Commutative-Monoid M2) module _ {l1 l2 : Level} (M : Commutative-Monoid l1) (N : Commutative-Monoid l2) (f : hom-Commutative-Monoid M N) where hom-semigroup-hom-Commutative-Monoid : hom-Semigroup ( semigroup-Commutative-Monoid M) ( semigroup-Commutative-Monoid N) hom-semigroup-hom-Commutative-Monoid = hom-semigroup-hom-Monoid ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N) ( f) map-hom-Commutative-Monoid : type-Commutative-Monoid M → type-Commutative-Monoid N map-hom-Commutative-Monoid = map-hom-Monoid ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N) ( f) preserves-mul-hom-Commutative-Monoid : preserves-mul-Semigroup ( semigroup-Commutative-Monoid M) ( semigroup-Commutative-Monoid N) ( map-hom-Commutative-Monoid) preserves-mul-hom-Commutative-Monoid = preserves-mul-hom-Monoid ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N) ( f) preserves-unit-hom-Commutative-Monoid : preserves-unit-hom-Semigroup ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N) ( hom-semigroup-hom-Commutative-Monoid) preserves-unit-hom-Commutative-Monoid = preserves-unit-hom-Monoid ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N) ( f)
The identity homomorphism of commutative monoids
id-hom-Commutative-Monoid : {l : Level} (M : Commutative-Monoid l) → hom-Commutative-Monoid M M id-hom-Commutative-Monoid M = id-hom-Monoid (monoid-Commutative-Monoid M)
Composition of homomorphisms of commutative monoids
module _ {l1 l2 l3 : Level} (K : Commutative-Monoid l1) (L : Commutative-Monoid l2) (M : Commutative-Monoid l3) where comp-hom-Commutative-Monoid : hom-Commutative-Monoid L M → hom-Commutative-Monoid K L → hom-Commutative-Monoid K M comp-hom-Commutative-Monoid = comp-hom-Monoid ( monoid-Commutative-Monoid K) ( monoid-Commutative-Monoid L) ( monoid-Commutative-Monoid M)
Homotopies of homomorphisms of commutative monoids
module _ {l1 l2 : Level} (M : Commutative-Monoid l1) (N : Commutative-Monoid l2) where htpy-hom-Commutative-Monoid : (f g : hom-Commutative-Monoid M N) → UU (l1 ⊔ l2) htpy-hom-Commutative-Monoid = htpy-hom-Monoid ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N) refl-htpy-hom-Commutative-Monoid : (f : hom-Commutative-Monoid M N) → htpy-hom-Commutative-Monoid f f refl-htpy-hom-Commutative-Monoid = refl-htpy-hom-Monoid ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N)
Properties
Homotopies characterize identifications of homomorphisms of commutative monoids
module _ {l1 l2 : Level} (M : Commutative-Monoid l1) (N : Commutative-Monoid l2) (f : hom-Commutative-Monoid M N) where is-torsorial-htpy-hom-Commutative-Monoid : is-torsorial (htpy-hom-Commutative-Monoid M N f) is-torsorial-htpy-hom-Commutative-Monoid = is-torsorial-htpy-hom-Monoid ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N) ( f) htpy-eq-hom-Commutative-Monoid : (g : hom-Commutative-Monoid M N) → (f = g) → htpy-hom-Commutative-Monoid M N f g htpy-eq-hom-Commutative-Monoid = htpy-eq-hom-Monoid ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N) ( f) is-equiv-htpy-eq-hom-Commutative-Monoid : (g : hom-Commutative-Monoid M N) → is-equiv (htpy-eq-hom-Commutative-Monoid g) is-equiv-htpy-eq-hom-Commutative-Monoid = is-equiv-htpy-eq-hom-Monoid ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N) ( f) extensionality-hom-Commutative-Monoid : (g : hom-Commutative-Monoid M N) → (f = g) ≃ htpy-hom-Commutative-Monoid M N f g extensionality-hom-Commutative-Monoid = extensionality-hom-Monoid ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N) ( f) eq-htpy-hom-Commutative-Monoid : (g : hom-Commutative-Monoid M N) → htpy-hom-Commutative-Monoid M N f g → f = g eq-htpy-hom-Commutative-Monoid = eq-htpy-hom-Monoid ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N) ( f)
Composition of homomorphisms of commutative monoids is associative
module _ {l1 l2 l3 l4 : Level} (K : Commutative-Monoid l1) (L : Commutative-Monoid l2) (M : Commutative-Monoid l3) (N : Commutative-Monoid l4) where associative-comp-hom-Commutative-Monoid : (h : hom-Commutative-Monoid M N) (g : hom-Commutative-Monoid L M) (f : hom-Commutative-Monoid K L) → comp-hom-Commutative-Monoid K L N ( comp-hom-Commutative-Monoid L M N h g) ( f) = comp-hom-Commutative-Monoid K M N ( h) ( comp-hom-Commutative-Monoid K L M g f) associative-comp-hom-Commutative-Monoid = associative-comp-hom-Monoid ( monoid-Commutative-Monoid K) ( monoid-Commutative-Monoid L) ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N)
The unit laws for composition of homomorphisms of commutative monoids
module _ {l1 l2 : Level} (M : Commutative-Monoid l1) (N : Commutative-Monoid l2) where left-unit-law-comp-hom-Commutative-Monoid : (f : hom-Commutative-Monoid M N) → comp-hom-Commutative-Monoid M N N (id-hom-Commutative-Monoid N) f = f left-unit-law-comp-hom-Commutative-Monoid = left-unit-law-comp-hom-Monoid ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N) right-unit-law-comp-hom-Commutative-Monoid : (f : hom-Commutative-Monoid M N) → comp-hom-Commutative-Monoid M M N f (id-hom-Commutative-Monoid M) = f right-unit-law-comp-hom-Commutative-Monoid = right-unit-law-comp-hom-Monoid ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N)
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-21. Egbert Rijke and Fredrik Bakke. Implement
is-torsorial
throughout the library (#875). - 2023-10-21. Egbert Rijke. Rename
is-contr-total
tois-torsorial
(#871).