Finite fields
Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.
Created on 2023-05-25.
Last modified on 2024-03-11.
module finite-algebra.finite-fields where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.commutative-semirings open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import finite-algebra.commutative-finite-rings open import finite-algebra.finite-rings open import foundation.action-on-identifications-binary-functions open import foundation.binary-embeddings open import foundation.binary-equivalences open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalences open import foundation.identity-types open import foundation.injective-maps open import foundation.involutions open import foundation.propositions open import foundation.sets open import foundation.unital-binary-operations open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.commutative-monoids open import group-theory.groups open import group-theory.monoids open import group-theory.semigroups open import lists.concatenation-lists open import lists.lists open import ring-theory.division-rings open import ring-theory.rings open import ring-theory.semirings
Idea
A discrete field is a commutative division ring. They are called discrete, because only nonzero elements are assumed to be invertible.
Definition
is-finite-field-Commutative-Ring-𝔽 : {l : Level} → Commutative-Ring-𝔽 l → UU l is-finite-field-Commutative-Ring-𝔽 A = is-division-Ring (ring-Commutative-Ring-𝔽 A) Field-𝔽 : (l : Level) → UU (lsuc l) Field-𝔽 l = Σ (Commutative-Ring-𝔽 l) (λ A → is-finite-field-Commutative-Ring-𝔽 A) module _ {l : Level} (A : Field-𝔽 l) where commutative-finite-ring-Field-𝔽 : Commutative-Ring-𝔽 l commutative-finite-ring-Field-𝔽 = pr1 A commutative-ring-Field-𝔽 : Commutative-Ring l commutative-ring-Field-𝔽 = commutative-ring-Commutative-Ring-𝔽 commutative-finite-ring-Field-𝔽 finite-ring-Field-𝔽 : Ring-𝔽 l finite-ring-Field-𝔽 = finite-ring-Commutative-Ring-𝔽 commutative-finite-ring-Field-𝔽 ring-Field-𝔽 : Ring l ring-Field-𝔽 = ring-Ring-𝔽 (finite-ring-Field-𝔽) ab-Field-𝔽 : Ab l ab-Field-𝔽 = ab-Ring-𝔽 finite-ring-Field-𝔽 set-Field-𝔽 : Set l set-Field-𝔽 = set-Ring-𝔽 finite-ring-Field-𝔽 type-Field-𝔽 : UU l type-Field-𝔽 = type-Ring-𝔽 finite-ring-Field-𝔽 is-set-type-Field-𝔽 : is-set type-Field-𝔽 is-set-type-Field-𝔽 = is-set-type-Ring-𝔽 finite-ring-Field-𝔽
Addition in a finite field
has-associative-add-Field-𝔽 : has-associative-mul-Set set-Field-𝔽 has-associative-add-Field-𝔽 = has-associative-add-Ring-𝔽 finite-ring-Field-𝔽 add-Field-𝔽 : type-Field-𝔽 → type-Field-𝔽 → type-Field-𝔽 add-Field-𝔽 = add-Ring-𝔽 finite-ring-Field-𝔽 add-Field-𝔽' : type-Field-𝔽 → type-Field-𝔽 → type-Field-𝔽 add-Field-𝔽' = add-Ring-𝔽' finite-ring-Field-𝔽 ap-add-Field-𝔽 : {x x' y y' : type-Field-𝔽} → (x = x') → (y = y') → add-Field-𝔽 x y = add-Field-𝔽 x' y' ap-add-Field-𝔽 = ap-add-Ring-𝔽 finite-ring-Field-𝔽 associative-add-Field-𝔽 : (x y z : type-Field-𝔽) → ( add-Field-𝔽 (add-Field-𝔽 x y) z) = ( add-Field-𝔽 x (add-Field-𝔽 y z)) associative-add-Field-𝔽 = associative-add-Ring-𝔽 finite-ring-Field-𝔽 additive-semigroup-Field-𝔽 : Semigroup l additive-semigroup-Field-𝔽 = semigroup-Ab ab-Field-𝔽 is-group-additive-semigroup-Field-𝔽 : is-group-Semigroup additive-semigroup-Field-𝔽 is-group-additive-semigroup-Field-𝔽 = is-group-Ab ab-Field-𝔽 commutative-add-Field-𝔽 : (x y : type-Field-𝔽) → Id (add-Field-𝔽 x y) (add-Field-𝔽 y x) commutative-add-Field-𝔽 = commutative-add-Ab ab-Field-𝔽 interchange-add-add-Field-𝔽 : (x y x' y' : type-Field-𝔽) → ( add-Field-𝔽 ( add-Field-𝔽 x y) ( add-Field-𝔽 x' y')) = ( add-Field-𝔽 ( add-Field-𝔽 x x') ( add-Field-𝔽 y y')) interchange-add-add-Field-𝔽 = interchange-add-add-Ring-𝔽 finite-ring-Field-𝔽 right-swap-add-Field-𝔽 : (x y z : type-Field-𝔽) → ( add-Field-𝔽 (add-Field-𝔽 x y) z) = ( add-Field-𝔽 (add-Field-𝔽 x z) y) right-swap-add-Field-𝔽 = right-swap-add-Ring-𝔽 finite-ring-Field-𝔽 left-swap-add-Field-𝔽 : (x y z : type-Field-𝔽) → ( add-Field-𝔽 x (add-Field-𝔽 y z)) = ( add-Field-𝔽 y (add-Field-𝔽 x z)) left-swap-add-Field-𝔽 = left-swap-add-Ring-𝔽 finite-ring-Field-𝔽 is-equiv-add-Field-𝔽 : (x : type-Field-𝔽) → is-equiv (add-Field-𝔽 x) is-equiv-add-Field-𝔽 = is-equiv-add-Ab ab-Field-𝔽 is-equiv-add-Field-𝔽' : (x : type-Field-𝔽) → is-equiv (add-Field-𝔽' x) is-equiv-add-Field-𝔽' = is-equiv-add-Ab' ab-Field-𝔽 is-binary-equiv-add-Field-𝔽 : is-binary-equiv add-Field-𝔽 pr1 is-binary-equiv-add-Field-𝔽 = is-equiv-add-Field-𝔽' pr2 is-binary-equiv-add-Field-𝔽 = is-equiv-add-Field-𝔽 is-binary-emb-add-Field-𝔽 : is-binary-emb add-Field-𝔽 is-binary-emb-add-Field-𝔽 = is-binary-emb-add-Ab ab-Field-𝔽 is-emb-add-Field-𝔽 : (x : type-Field-𝔽) → is-emb (add-Field-𝔽 x) is-emb-add-Field-𝔽 = is-emb-add-Ab ab-Field-𝔽 is-emb-add-Field-𝔽' : (x : type-Field-𝔽) → is-emb (add-Field-𝔽' x) is-emb-add-Field-𝔽' = is-emb-add-Ab' ab-Field-𝔽 is-injective-add-Field-𝔽 : (x : type-Field-𝔽) → is-injective (add-Field-𝔽 x) is-injective-add-Field-𝔽 = is-injective-add-Ab ab-Field-𝔽 is-injective-add-Field-𝔽' : (x : type-Field-𝔽) → is-injective (add-Field-𝔽' x) is-injective-add-Field-𝔽' = is-injective-add-Ab' ab-Field-𝔽
The zero element of a finite field
has-zero-Field-𝔽 : is-unital add-Field-𝔽 has-zero-Field-𝔽 = has-zero-Ring-𝔽 finite-ring-Field-𝔽 zero-Field-𝔽 : type-Field-𝔽 zero-Field-𝔽 = zero-Ring-𝔽 finite-ring-Field-𝔽 is-zero-Field-𝔽 : type-Field-𝔽 → UU l is-zero-Field-𝔽 = is-zero-Ring-𝔽 finite-ring-Field-𝔽 is-nonzero-Field-𝔽 : type-Field-𝔽 → UU l is-nonzero-Field-𝔽 = is-nonzero-Ring-𝔽 finite-ring-Field-𝔽 is-zero-field-finite-Prop : type-Field-𝔽 → Prop l is-zero-field-finite-Prop = is-zero-finite-ring-Prop finite-ring-Field-𝔽 is-nonzero-field-finite-Prop : type-Field-𝔽 → Prop l is-nonzero-field-finite-Prop = is-nonzero-finite-ring-Prop finite-ring-Field-𝔽 left-unit-law-add-Field-𝔽 : (x : type-Field-𝔽) → add-Field-𝔽 zero-Field-𝔽 x = x left-unit-law-add-Field-𝔽 = left-unit-law-add-Ring-𝔽 finite-ring-Field-𝔽 right-unit-law-add-Field-𝔽 : (x : type-Field-𝔽) → add-Field-𝔽 x zero-Field-𝔽 = x right-unit-law-add-Field-𝔽 = right-unit-law-add-Ring-𝔽 finite-ring-Field-𝔽
Additive inverses in a finite fields
has-negatives-Field-𝔽 : is-group-is-unital-Semigroup additive-semigroup-Field-𝔽 has-zero-Field-𝔽 has-negatives-Field-𝔽 = has-negatives-Ab ab-Field-𝔽 neg-Field-𝔽 : type-Field-𝔽 → type-Field-𝔽 neg-Field-𝔽 = neg-Ring-𝔽 finite-ring-Field-𝔽 left-inverse-law-add-Field-𝔽 : (x : type-Field-𝔽) → add-Field-𝔽 (neg-Field-𝔽 x) x = zero-Field-𝔽 left-inverse-law-add-Field-𝔽 = left-inverse-law-add-Ring-𝔽 finite-ring-Field-𝔽 right-inverse-law-add-Field-𝔽 : (x : type-Field-𝔽) → add-Field-𝔽 x (neg-Field-𝔽 x) = zero-Field-𝔽 right-inverse-law-add-Field-𝔽 = right-inverse-law-add-Ring-𝔽 finite-ring-Field-𝔽 neg-neg-Field-𝔽 : (x : type-Field-𝔽) → neg-Field-𝔽 (neg-Field-𝔽 x) = x neg-neg-Field-𝔽 = neg-neg-Ab ab-Field-𝔽 distributive-neg-add-Field-𝔽 : (x y : type-Field-𝔽) → neg-Field-𝔽 (add-Field-𝔽 x y) = add-Field-𝔽 (neg-Field-𝔽 x) (neg-Field-𝔽 y) distributive-neg-add-Field-𝔽 = distributive-neg-add-Ab ab-Field-𝔽
Multiplication in a finite fields
has-associative-mul-Field-𝔽 : has-associative-mul-Set set-Field-𝔽 has-associative-mul-Field-𝔽 = has-associative-mul-Ring-𝔽 finite-ring-Field-𝔽 mul-Field-𝔽 : (x y : type-Field-𝔽) → type-Field-𝔽 mul-Field-𝔽 = mul-Ring-𝔽 finite-ring-Field-𝔽 mul-Field-𝔽' : (x y : type-Field-𝔽) → type-Field-𝔽 mul-Field-𝔽' = mul-Ring-𝔽' finite-ring-Field-𝔽 ap-mul-Field-𝔽 : {x x' y y' : type-Field-𝔽} (p : Id x x') (q : Id y y') → Id (mul-Field-𝔽 x y) (mul-Field-𝔽 x' y') ap-mul-Field-𝔽 p q = ap-binary mul-Field-𝔽 p q associative-mul-Field-𝔽 : (x y z : type-Field-𝔽) → mul-Field-𝔽 (mul-Field-𝔽 x y) z = mul-Field-𝔽 x (mul-Field-𝔽 y z) associative-mul-Field-𝔽 = associative-mul-Ring-𝔽 finite-ring-Field-𝔽 multiplicative-semigroup-Field-𝔽 : Semigroup l pr1 multiplicative-semigroup-Field-𝔽 = set-Field-𝔽 pr2 multiplicative-semigroup-Field-𝔽 = has-associative-mul-Field-𝔽 left-distributive-mul-add-Field-𝔽 : (x y z : type-Field-𝔽) → ( mul-Field-𝔽 x (add-Field-𝔽 y z)) = ( add-Field-𝔽 ( mul-Field-𝔽 x y) ( mul-Field-𝔽 x z)) left-distributive-mul-add-Field-𝔽 = left-distributive-mul-add-Ring-𝔽 finite-ring-Field-𝔽 right-distributive-mul-add-Field-𝔽 : (x y z : type-Field-𝔽) → ( mul-Field-𝔽 (add-Field-𝔽 x y) z) = ( add-Field-𝔽 ( mul-Field-𝔽 x z) ( mul-Field-𝔽 y z)) right-distributive-mul-add-Field-𝔽 = right-distributive-mul-add-Ring-𝔽 finite-ring-Field-𝔽 commutative-mul-Field-𝔽 : (x y : type-Field-𝔽) → mul-Field-𝔽 x y = mul-Field-𝔽 y x commutative-mul-Field-𝔽 = commutative-mul-Commutative-Ring-𝔽 commutative-finite-ring-Field-𝔽
Multiplicative units in a finite fields
is-unital-Field-𝔽 : is-unital mul-Field-𝔽 is-unital-Field-𝔽 = is-unital-Ring-𝔽 finite-ring-Field-𝔽 multiplicative-monoid-Field-𝔽 : Monoid l multiplicative-monoid-Field-𝔽 = multiplicative-monoid-Ring-𝔽 finite-ring-Field-𝔽 one-Field-𝔽 : type-Field-𝔽 one-Field-𝔽 = one-Ring-𝔽 finite-ring-Field-𝔽 left-unit-law-mul-Field-𝔽 : (x : type-Field-𝔽) → mul-Field-𝔽 one-Field-𝔽 x = x left-unit-law-mul-Field-𝔽 = left-unit-law-mul-Ring-𝔽 finite-ring-Field-𝔽 right-unit-law-mul-Field-𝔽 : (x : type-Field-𝔽) → mul-Field-𝔽 x one-Field-𝔽 = x right-unit-law-mul-Field-𝔽 = right-unit-law-mul-Ring-𝔽 finite-ring-Field-𝔽 right-swap-mul-Field-𝔽 : (x y z : type-Field-𝔽) → mul-Field-𝔽 (mul-Field-𝔽 x y) z = mul-Field-𝔽 (mul-Field-𝔽 x z) y right-swap-mul-Field-𝔽 = right-swap-mul-Commutative-Ring-𝔽 commutative-finite-ring-Field-𝔽 left-swap-mul-Field-𝔽 : (x y z : type-Field-𝔽) → mul-Field-𝔽 x (mul-Field-𝔽 y z) = mul-Field-𝔽 y (mul-Field-𝔽 x z) left-swap-mul-Field-𝔽 = left-swap-mul-Commutative-Ring-𝔽 commutative-finite-ring-Field-𝔽 interchange-mul-mul-Field-𝔽 : (x y z w : type-Field-𝔽) → mul-Field-𝔽 ( mul-Field-𝔽 x y) ( mul-Field-𝔽 z w) = mul-Field-𝔽 ( mul-Field-𝔽 x z) ( mul-Field-𝔽 y w) interchange-mul-mul-Field-𝔽 = interchange-mul-mul-Commutative-Ring-𝔽 commutative-finite-ring-Field-𝔽
The zero laws for multiplication of a finite field
left-zero-law-mul-Field-𝔽 : (x : type-Field-𝔽) → mul-Field-𝔽 zero-Field-𝔽 x = zero-Field-𝔽 left-zero-law-mul-Field-𝔽 = left-zero-law-mul-Ring-𝔽 finite-ring-Field-𝔽 right-zero-law-mul-Field-𝔽 : (x : type-Field-𝔽) → mul-Field-𝔽 x zero-Field-𝔽 = zero-Field-𝔽 right-zero-law-mul-Field-𝔽 = right-zero-law-mul-Ring-𝔽 finite-ring-Field-𝔽
Finite fields are commutative finite semirings
multiplicative-commutative-monoid-Field-𝔽 : Commutative-Monoid l multiplicative-commutative-monoid-Field-𝔽 = multiplicative-commutative-monoid-Commutative-Ring-𝔽 commutative-finite-ring-Field-𝔽 semifinite-ring-Field-𝔽 : Semiring l semifinite-ring-Field-𝔽 = semiring-Ring-𝔽 finite-ring-Field-𝔽 commutative-semiring-Field-𝔽 : Commutative-Semiring l commutative-semiring-Field-𝔽 = commutative-semiring-Commutative-Ring-𝔽 commutative-finite-ring-Field-𝔽
Computing multiplication with minus one in a finite field
neg-one-Field-𝔽 : type-Field-𝔽 neg-one-Field-𝔽 = neg-one-Ring-𝔽 finite-ring-Field-𝔽 mul-neg-one-Field-𝔽 : (x : type-Field-𝔽) → mul-Field-𝔽 neg-one-Field-𝔽 x = neg-Field-𝔽 x mul-neg-one-Field-𝔽 = mul-neg-one-Ring-𝔽 finite-ring-Field-𝔽 mul-neg-one-Field-𝔽' : (x : type-Field-𝔽) → mul-Field-𝔽 x neg-one-Field-𝔽 = neg-Field-𝔽 x mul-neg-one-Field-𝔽' = mul-neg-one-Ring-𝔽' finite-ring-Field-𝔽 is-involution-mul-neg-one-Field-𝔽 : is-involution (mul-Field-𝔽 neg-one-Field-𝔽) is-involution-mul-neg-one-Field-𝔽 = is-involution-mul-neg-one-Ring-𝔽 finite-ring-Field-𝔽 is-involution-mul-neg-one-Field-𝔽' : is-involution (mul-Field-𝔽' neg-one-Field-𝔽) is-involution-mul-neg-one-Field-𝔽' = is-involution-mul-neg-one-Ring-𝔽' finite-ring-Field-𝔽
Left and right negative laws for multiplication
left-negative-law-mul-Field-𝔽 : (x y : type-Field-𝔽) → mul-Field-𝔽 (neg-Field-𝔽 x) y = neg-Field-𝔽 (mul-Field-𝔽 x y) left-negative-law-mul-Field-𝔽 = left-negative-law-mul-Ring-𝔽 finite-ring-Field-𝔽 right-negative-law-mul-Field-𝔽 : (x y : type-Field-𝔽) → mul-Field-𝔽 x (neg-Field-𝔽 y) = neg-Field-𝔽 (mul-Field-𝔽 x y) right-negative-law-mul-Field-𝔽 = right-negative-law-mul-Ring-𝔽 finite-ring-Field-𝔽 mul-neg-Field-𝔽 : (x y : type-Field-𝔽) → mul-Field-𝔽 (neg-Field-𝔽 x) (neg-Field-𝔽 y) = mul-Field-𝔽 x y mul-neg-Field-𝔽 = mul-neg-Ring-𝔽 finite-ring-Field-𝔽
Scalar multiplication of elements of a commutative finite ring by natural numbers
mul-nat-scalar-Field-𝔽 : ℕ → type-Field-𝔽 → type-Field-𝔽 mul-nat-scalar-Field-𝔽 = mul-nat-scalar-Ring-𝔽 finite-ring-Field-𝔽 ap-mul-nat-scalar-Field-𝔽 : {m n : ℕ} {x y : type-Field-𝔽} → (m = n) → (x = y) → mul-nat-scalar-Field-𝔽 m x = mul-nat-scalar-Field-𝔽 n y ap-mul-nat-scalar-Field-𝔽 = ap-mul-nat-scalar-Ring-𝔽 finite-ring-Field-𝔽 left-zero-law-mul-nat-scalar-Field-𝔽 : (x : type-Field-𝔽) → mul-nat-scalar-Field-𝔽 0 x = zero-Field-𝔽 left-zero-law-mul-nat-scalar-Field-𝔽 = left-zero-law-mul-nat-scalar-Ring-𝔽 finite-ring-Field-𝔽 right-zero-law-mul-nat-scalar-Field-𝔽 : (n : ℕ) → mul-nat-scalar-Field-𝔽 n zero-Field-𝔽 = zero-Field-𝔽 right-zero-law-mul-nat-scalar-Field-𝔽 = right-zero-law-mul-nat-scalar-Ring-𝔽 finite-ring-Field-𝔽 left-unit-law-mul-nat-scalar-Field-𝔽 : (x : type-Field-𝔽) → mul-nat-scalar-Field-𝔽 1 x = x left-unit-law-mul-nat-scalar-Field-𝔽 = left-unit-law-mul-nat-scalar-Ring-𝔽 finite-ring-Field-𝔽 left-nat-scalar-law-mul-Field-𝔽 : (n : ℕ) (x y : type-Field-𝔽) → mul-Field-𝔽 (mul-nat-scalar-Field-𝔽 n x) y = mul-nat-scalar-Field-𝔽 n (mul-Field-𝔽 x y) left-nat-scalar-law-mul-Field-𝔽 = left-nat-scalar-law-mul-Ring-𝔽 finite-ring-Field-𝔽 right-nat-scalar-law-mul-Field-𝔽 : (n : ℕ) (x y : type-Field-𝔽) → mul-Field-𝔽 x (mul-nat-scalar-Field-𝔽 n y) = mul-nat-scalar-Field-𝔽 n (mul-Field-𝔽 x y) right-nat-scalar-law-mul-Field-𝔽 = right-nat-scalar-law-mul-Ring-𝔽 finite-ring-Field-𝔽 left-distributive-mul-nat-scalar-add-Field-𝔽 : (n : ℕ) (x y : type-Field-𝔽) → mul-nat-scalar-Field-𝔽 n (add-Field-𝔽 x y) = add-Field-𝔽 ( mul-nat-scalar-Field-𝔽 n x) ( mul-nat-scalar-Field-𝔽 n y) left-distributive-mul-nat-scalar-add-Field-𝔽 = left-distributive-mul-nat-scalar-add-Ring-𝔽 finite-ring-Field-𝔽 right-distributive-mul-nat-scalar-add-Field-𝔽 : (m n : ℕ) (x : type-Field-𝔽) → mul-nat-scalar-Field-𝔽 (m +ℕ n) x = add-Field-𝔽 ( mul-nat-scalar-Field-𝔽 m x) ( mul-nat-scalar-Field-𝔽 n x) right-distributive-mul-nat-scalar-add-Field-𝔽 = right-distributive-mul-nat-scalar-add-Ring-𝔽 finite-ring-Field-𝔽
Addition of a list of elements in a finite field
add-list-Field-𝔽 : list type-Field-𝔽 → type-Field-𝔽 add-list-Field-𝔽 = add-list-Ring-𝔽 finite-ring-Field-𝔽 preserves-concat-add-list-Field-𝔽 : (l1 l2 : list type-Field-𝔽) → Id ( add-list-Field-𝔽 (concat-list l1 l2)) ( add-Field-𝔽 ( add-list-Field-𝔽 l1) ( add-list-Field-𝔽 l2)) preserves-concat-add-list-Field-𝔽 = preserves-concat-add-list-Ring-𝔽 finite-ring-Field-𝔽
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-06-09. Fredrik Bakke. Remove unused imports (#648).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).
- 2023-05-25. Victor Blanchi and Egbert Rijke. Towards Hasse-Weil species (#631).