Dependent products of groups
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-03-13.
Last modified on 2024-03-11.
module group-theory.dependent-products-groups where
Imports
open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.dependent-products-semigroups open import group-theory.groups open import group-theory.monoids open import group-theory.semigroups
Idea
Given a family of groups Gᵢ
indexed by i : I
, the dependent product
Π(i : I), Gᵢ
is a group consisting of dependent functions taking i : I
to an
element of the underlying type of Gᵢ
. The multiplicative operation and the
unit are given pointwise.
Definition
module _ {l1 l2 : Level} (I : UU l1) (G : I → Group l2) where semigroup-Π-Group : Semigroup (l1 ⊔ l2) semigroup-Π-Group = Π-Semigroup I (λ i → semigroup-Group (G i)) set-Π-Group : Set (l1 ⊔ l2) set-Π-Group = set-Semigroup semigroup-Π-Group type-Π-Group : UU (l1 ⊔ l2) type-Π-Group = type-Semigroup semigroup-Π-Group mul-Π-Group : (f g : type-Π-Group) → type-Π-Group mul-Π-Group = mul-Semigroup semigroup-Π-Group associative-mul-Π-Group : (f g h : type-Π-Group) → mul-Π-Group (mul-Π-Group f g) h = mul-Π-Group f (mul-Π-Group g h) associative-mul-Π-Group = associative-mul-Semigroup semigroup-Π-Group unit-Π-Group : type-Π-Group unit-Π-Group i = unit-Group (G i) left-unit-law-mul-Π-Group : (f : type-Π-Group) → mul-Π-Group unit-Π-Group f = f left-unit-law-mul-Π-Group f = eq-htpy (λ i → left-unit-law-mul-Group (G i) (f i)) right-unit-law-mul-Π-Group : (f : type-Π-Group) → mul-Π-Group f unit-Π-Group = f right-unit-law-mul-Π-Group f = eq-htpy (λ i → right-unit-law-mul-Group (G i) (f i)) is-unital-Π-Group : is-unital-Semigroup semigroup-Π-Group pr1 is-unital-Π-Group = unit-Π-Group pr1 (pr2 is-unital-Π-Group) = left-unit-law-mul-Π-Group pr2 (pr2 is-unital-Π-Group) = right-unit-law-mul-Π-Group monoid-Π-Group : Monoid (l1 ⊔ l2) pr1 monoid-Π-Group = semigroup-Π-Group pr2 monoid-Π-Group = is-unital-Π-Group inv-Π-Group : type-Π-Group → type-Π-Group inv-Π-Group f x = inv-Group (G x) (f x) left-inverse-law-mul-Π-Group : (f : type-Π-Group) → mul-Π-Group (inv-Π-Group f) f = unit-Π-Group left-inverse-law-mul-Π-Group f = eq-htpy (λ x → left-inverse-law-mul-Group (G x) (f x)) right-inverse-law-mul-Π-Group : (f : type-Π-Group) → mul-Π-Group f (inv-Π-Group f) = unit-Π-Group right-inverse-law-mul-Π-Group f = eq-htpy (λ x → right-inverse-law-mul-Group (G x) (f x)) is-group-Π-Group : is-group-Semigroup semigroup-Π-Group pr1 is-group-Π-Group = is-unital-Π-Group pr1 (pr2 is-group-Π-Group) = inv-Π-Group pr1 (pr2 (pr2 is-group-Π-Group)) = left-inverse-law-mul-Π-Group pr2 (pr2 (pr2 is-group-Π-Group)) = right-inverse-law-mul-Π-Group Π-Group : Group (l1 ⊔ l2) pr1 Π-Group = semigroup-Π-Group pr2 Π-Group = is-group-Π-Group
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-03-19. Fredrik Bakke. Make
unused_imports_remover
faster and safer (#512). - 2023-03-13. Egbert Rijke. Products of semigroups, monoids, commutative monoids, groups, abelian groups, semirings, rings, commutative semirings, and commutative rings (#505).