2
-element decidable subtypes
Content created by Egbert Rijke, Fredrik Bakke, Eléonore Mangel, Jonathan Prieto-Cubides, Elisabeth Stenholm, Julian KG, fernabnor and louismntnu.
Created on 2022-03-29.
Last modified on 2024-04-11.
module univalent-combinatorics.2-element-decidable-subtypes where
Imports
open import elementary-number-theory.equality-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.well-ordering-principle-standard-finite-types open import foundation.automorphisms open import foundation.booleans open import foundation.coproduct-types open import foundation.decidable-equality open import foundation.decidable-propositions open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equality-dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.functoriality-coproduct-types open import foundation.functoriality-dependent-pair-types open import foundation.functoriality-propositional-truncation open import foundation.identity-types open import foundation.injective-maps open import foundation.logical-equivalences open import foundation.mere-equivalences open import foundation.negated-equality open import foundation.negation open import foundation.propositional-truncations open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.type-arithmetic-coproduct-types open import foundation.univalence open import foundation.universe-levels open import univalent-combinatorics.2-element-subtypes open import univalent-combinatorics.2-element-types open import univalent-combinatorics.decidable-subtypes open import univalent-combinatorics.dependent-function-types open import univalent-combinatorics.finite-types open import univalent-combinatorics.standard-finite-types
Idea
A 2-element decidable subtype of a type A
is a decidable subtype of A
of
which the underlying type has 2 elements.
Definition
The type of 2-element decidable subtypes
2-Element-Decidable-Subtype : {l1 : Level} (l2 : Level) → UU l1 → UU (l1 ⊔ lsuc l2) 2-Element-Decidable-Subtype l2 X = Σ (decidable-subtype l2 X) (λ P → has-two-elements (type-decidable-subtype P)) module _ {l1 l2 : Level} {X : UU l1} (P : 2-Element-Decidable-Subtype l2 X) where decidable-subtype-2-Element-Decidable-Subtype : decidable-subtype l2 X decidable-subtype-2-Element-Decidable-Subtype = pr1 P subtype-2-Element-Decidable-Subtype : subtype l2 X subtype-2-Element-Decidable-Subtype = subtype-decidable-subtype decidable-subtype-2-Element-Decidable-Subtype is-decidable-subtype-subtype-2-Element-Decidable-Subtype : is-decidable-subtype subtype-2-Element-Decidable-Subtype is-decidable-subtype-subtype-2-Element-Decidable-Subtype = is-decidable-decidable-subtype decidable-subtype-2-Element-Decidable-Subtype is-in-2-Element-Decidable-Subtype : X → UU l2 is-in-2-Element-Decidable-Subtype = is-in-decidable-subtype decidable-subtype-2-Element-Decidable-Subtype is-prop-is-in-2-Element-Decidable-Subtype : (x : X) → is-prop (is-in-2-Element-Decidable-Subtype x) is-prop-is-in-2-Element-Decidable-Subtype = is-prop-is-in-decidable-subtype decidable-subtype-2-Element-Decidable-Subtype eq-is-in-2-Element-Decidable-Subtype : {x : X} {y z : is-in-2-Element-Decidable-Subtype x} → Id y z eq-is-in-2-Element-Decidable-Subtype {x} = eq-is-prop (is-prop-is-in-2-Element-Decidable-Subtype x) type-2-Element-Decidable-Subtype : UU (l1 ⊔ l2) type-2-Element-Decidable-Subtype = type-decidable-subtype decidable-subtype-2-Element-Decidable-Subtype inclusion-2-Element-Decidable-Subtype : type-2-Element-Decidable-Subtype → X inclusion-2-Element-Decidable-Subtype = inclusion-decidable-subtype decidable-subtype-2-Element-Decidable-Subtype is-emb-inclusion-2-Element-Decidable-Subtype : is-emb inclusion-2-Element-Decidable-Subtype is-emb-inclusion-2-Element-Decidable-Subtype = is-emb-inclusion-decidable-subtype decidable-subtype-2-Element-Decidable-Subtype is-injective-inclusion-2-Element-Decidable-Subtype : is-injective inclusion-2-Element-Decidable-Subtype is-injective-inclusion-2-Element-Decidable-Subtype = is-injective-inclusion-decidable-subtype decidable-subtype-2-Element-Decidable-Subtype has-two-elements-type-2-Element-Decidable-Subtype : has-two-elements type-2-Element-Decidable-Subtype has-two-elements-type-2-Element-Decidable-Subtype = pr2 P 2-element-type-2-Element-Decidable-Subtype : 2-Element-Type (l1 ⊔ l2) pr1 2-element-type-2-Element-Decidable-Subtype = type-2-Element-Decidable-Subtype pr2 2-element-type-2-Element-Decidable-Subtype = has-two-elements-type-2-Element-Decidable-Subtype is-inhabited-type-2-Element-Decidable-Subtype : type-trunc-Prop type-2-Element-Decidable-Subtype is-inhabited-type-2-Element-Decidable-Subtype = is-inhabited-2-Element-Type 2-element-type-2-Element-Decidable-Subtype
The standard 2-element decidable subtypes in a type with decidable equality
module _ {l : Level} {X : UU l} (d : has-decidable-equality X) {x y : X} (np : x ≠ y) where type-prop-standard-2-Element-Decidable-Subtype : X → UU l type-prop-standard-2-Element-Decidable-Subtype = type-prop-standard-2-Element-Subtype ( pair X (is-set-has-decidable-equality d)) ( np) is-prop-type-prop-standard-2-Element-Decidable-Subtype : (z : X) → is-prop (type-prop-standard-2-Element-Decidable-Subtype z) is-prop-type-prop-standard-2-Element-Decidable-Subtype = is-prop-type-prop-standard-2-Element-Subtype ( pair X (is-set-has-decidable-equality d)) ( np) is-decidable-type-prop-standard-2-Element-Decidable-Subtype : (z : X) → is-decidable (type-prop-standard-2-Element-Decidable-Subtype z) is-decidable-type-prop-standard-2-Element-Decidable-Subtype z = is-decidable-coproduct (d x z) (d y z) subtype-standard-2-Element-Decidable-Subtype : subtype l X subtype-standard-2-Element-Decidable-Subtype = subtype-standard-2-Element-Subtype ( pair X (is-set-has-decidable-equality d)) ( np) decidable-subtype-standard-2-Element-Decidable-Subtype : decidable-subtype l X pr1 (decidable-subtype-standard-2-Element-Decidable-Subtype z) = type-prop-standard-2-Element-Decidable-Subtype z pr1 (pr2 (decidable-subtype-standard-2-Element-Decidable-Subtype z)) = is-prop-type-prop-standard-2-Element-Decidable-Subtype z pr2 (pr2 (decidable-subtype-standard-2-Element-Decidable-Subtype z)) = is-decidable-type-prop-standard-2-Element-Decidable-Subtype z type-standard-2-Element-Decidable-Subtype : UU l type-standard-2-Element-Decidable-Subtype = type-standard-2-Element-Subtype ( pair X (is-set-has-decidable-equality d)) ( np) equiv-type-standard-2-Element-Decidable-Subtype : Fin 2 ≃ type-standard-2-Element-Decidable-Subtype equiv-type-standard-2-Element-Decidable-Subtype = equiv-type-standard-2-Element-Subtype ( pair X (is-set-has-decidable-equality d)) ( np) has-two-elements-type-standard-2-Element-Decidable-Subtype : has-two-elements type-standard-2-Element-Decidable-Subtype has-two-elements-type-standard-2-Element-Decidable-Subtype = has-two-elements-type-standard-2-Element-Subtype ( pair X (is-set-has-decidable-equality d)) ( np) 2-element-type-standard-2-Element-Decidable-Subtype : 2-Element-Type l pr1 2-element-type-standard-2-Element-Decidable-Subtype = type-standard-2-Element-Decidable-Subtype pr2 2-element-type-standard-2-Element-Decidable-Subtype = has-two-elements-type-standard-2-Element-Decidable-Subtype standard-2-Element-Decidable-Subtype : 2-Element-Decidable-Subtype l X pr1 standard-2-Element-Decidable-Subtype = decidable-subtype-standard-2-Element-Decidable-Subtype pr2 standard-2-Element-Decidable-Subtype = has-two-elements-type-standard-2-Element-Decidable-Subtype module _ {l : Level} {X : UU l} (d : has-decidable-equality X) {x y : X} (np : x ≠ y) where is-commutative-standard-2-Element-Decidable-Subtype : Id ( standard-2-Element-Decidable-Subtype d np) ( standard-2-Element-Decidable-Subtype d (λ p → np (inv p))) is-commutative-standard-2-Element-Decidable-Subtype = eq-pair-Σ ( eq-htpy (λ z → eq-pair-Σ ( eq-equiv ( pair ( map-commutative-coproduct (Id x z) (Id y z)) ( is-equiv-map-commutative-coproduct (Id x z) (Id y z)))) ( eq-pair-Σ ( eq-is-prop ( is-prop-is-prop ( type-Decidable-Prop ( pr1 ( standard-2-Element-Decidable-Subtype d ( λ p → np (inv p))) ( z))))) ( eq-is-prop ( is-prop-is-decidable ( is-prop-type-Decidable-Prop ( pr1 ( standard-2-Element-Decidable-Subtype d ( λ p → np (inv p))) ( z)))))))) ( eq-is-prop is-prop-type-trunc-Prop) module _ {l : Level} {X : UU l} (d : has-decidable-equality X) {x y z w : X} (np : x ≠ y) (nq : z ≠ w) (r : x = z) (s : y = w) where eq-equal-elements-standard-2-Element-Decidable-Subtype : Id ( standard-2-Element-Decidable-Subtype d np) ( standard-2-Element-Decidable-Subtype d nq) eq-equal-elements-standard-2-Element-Decidable-Subtype = eq-pair-Σ ( eq-htpy ( λ v → eq-pair-Σ ( eq-equiv ( equiv-coproduct ( equiv-concat (inv r) v) ( equiv-concat (inv s) v))) ( eq-pair-Σ ( eq-is-prop ( is-prop-is-prop ( type-Decidable-Prop ( pr1 ( standard-2-Element-Decidable-Subtype d nq) ( v))))) ( eq-is-prop ( is-prop-is-decidable ( is-prop-type-Decidable-Prop ( pr1 ( standard-2-Element-Decidable-Subtype d nq) ( v)))))))) ( eq-is-prop is-prop-type-trunc-Prop)
Swapping the elements in a 2-element subtype
module _ {l1 l2 : Level} {X : UU l1} (P : 2-Element-Decidable-Subtype l2 X) where swap-2-Element-Decidable-Subtype : Aut (type-2-Element-Decidable-Subtype P) swap-2-Element-Decidable-Subtype = swap-2-Element-Type (2-element-type-2-Element-Decidable-Subtype P) map-swap-2-Element-Decidable-Subtype : type-2-Element-Decidable-Subtype P → type-2-Element-Decidable-Subtype P map-swap-2-Element-Decidable-Subtype = map-swap-2-Element-Type (2-element-type-2-Element-Decidable-Subtype P) compute-swap-2-Element-Decidable-Subtype : (x y : type-2-Element-Decidable-Subtype P) → x ≠ y → Id (map-swap-2-Element-Decidable-Subtype x) y compute-swap-2-Element-Decidable-Subtype = compute-swap-2-Element-Type (2-element-type-2-Element-Decidable-Subtype P) module _ {l1 l2 : Level} (n : ℕ) (X : UU-Fin l1 n) where is-finite-2-Element-Decidable-Subtype : is-finite (2-Element-Decidable-Subtype l2 (type-UU-Fin n X)) is-finite-2-Element-Decidable-Subtype = is-finite-type-decidable-subtype (λ P → pair ( has-cardinality 2 ( Σ (type-UU-Fin n X) (type-Decidable-Prop ∘ P))) ( pair ( is-prop-type-trunc-Prop) ( is-decidable-equiv ( equiv-has-cardinality-id-number-of-elements-is-finite ( Σ (type-UU-Fin n X) (type-Decidable-Prop ∘ P)) ( is-finite-type-decidable-subtype P ( is-finite-type-UU-Fin n X)) ( 2)) ( has-decidable-equality-ℕ ( number-of-elements-is-finite ( is-finite-type-decidable-subtype P ( is-finite-type-UU-Fin n X))) ( 2))))) ( is-finite-Π ( is-finite-type-UU-Fin n X) ( λ x → is-finite-equiv ( inv-equiv equiv-bool-Decidable-Prop ∘e equiv-bool-Fin-two-ℕ) ( is-finite-Fin 2)))
2-element decidable subtypes are closed under precomposition with an equivalence
precomp-equiv-2-Element-Decidable-Subtype : {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} → X ≃ Y → 2-Element-Decidable-Subtype l3 Y → 2-Element-Decidable-Subtype l3 X pr1 (precomp-equiv-2-Element-Decidable-Subtype e (pair P H)) = P ∘ (map-equiv e) pr2 (precomp-equiv-2-Element-Decidable-Subtype e (pair P H)) = transitive-mere-equiv ( Fin 2) ( type-subtype (prop-Decidable-Prop ∘ P)) ( type-subtype (prop-Decidable-Prop ∘ (P ∘ pr1 e))) ( unit-trunc-Prop ( equiv-subtype-equiv ( inv-equiv e) ( subtype-decidable-subtype P) ( subtype-decidable-subtype (P ∘ (map-equiv e))) ( λ x → iff-equiv ( tr ( λ g → ( type-Decidable-Prop (P x)) ≃ ( type-Decidable-Prop (P (map-equiv g x)))) ( inv (right-inverse-law-equiv e)) ( id-equiv))))) ( H) preserves-comp-precomp-equiv-2-Element-Decidable-Subtype : { l1 l2 l3 l4 : Level} {X : UU l1} {Y : UU l2} {Z : UU l3} (e : X ≃ Y) → ( f : Y ≃ Z) → Id ( precomp-equiv-2-Element-Decidable-Subtype {l3 = l4} (f ∘e e)) ( ( precomp-equiv-2-Element-Decidable-Subtype e) ∘ ( precomp-equiv-2-Element-Decidable-Subtype f)) preserves-comp-precomp-equiv-2-Element-Decidable-Subtype e f = eq-htpy ( λ (pair P H) → eq-pair-eq-fiber ( eq-is-prop is-prop-type-trunc-Prop))
Properties
Any 2-element decidable subtype of a standard finite type is a standard 2-element decidable subtype
module _ {l : Level} {n : ℕ} (P : 2-Element-Decidable-Subtype l (Fin n)) where element-subtype-2-element-decidable-subtype-Fin : type-2-Element-Decidable-Subtype P element-subtype-2-element-decidable-subtype-Fin = ε-operator-decidable-subtype-Fin n ( decidable-subtype-2-Element-Decidable-Subtype P) ( is-inhabited-type-2-Element-Decidable-Subtype P) element-2-element-decidable-subtype-Fin : Fin n element-2-element-decidable-subtype-Fin = pr1 element-subtype-2-element-decidable-subtype-Fin in-subtype-element-2-element-decidable-subtype-Fin : is-in-2-Element-Decidable-Subtype P element-2-element-decidable-subtype-Fin in-subtype-element-2-element-decidable-subtype-Fin = pr2 element-subtype-2-element-decidable-subtype-Fin other-element-subtype-2-element-decidable-subtype-Fin : type-2-Element-Decidable-Subtype P other-element-subtype-2-element-decidable-subtype-Fin = map-swap-2-Element-Type ( 2-element-type-2-Element-Decidable-Subtype P) ( element-subtype-2-element-decidable-subtype-Fin) other-element-2-element-decidable-subtype-Fin : Fin n other-element-2-element-decidable-subtype-Fin = pr1 other-element-subtype-2-element-decidable-subtype-Fin in-subtype-other-element-2-element-decidable-subtype-Fin : is-in-2-Element-Decidable-Subtype P other-element-2-element-decidable-subtype-Fin in-subtype-other-element-2-element-decidable-subtype-Fin = pr2 other-element-subtype-2-element-decidable-subtype-Fin abstract unequal-elements-2-element-decidable-subtype-Fin : ¬ ( Id ( element-2-element-decidable-subtype-Fin) ( other-element-2-element-decidable-subtype-Fin)) unequal-elements-2-element-decidable-subtype-Fin p = has-no-fixed-points-swap-2-Element-Type ( 2-element-type-2-Element-Decidable-Subtype P) { element-subtype-2-element-decidable-subtype-Fin} ( eq-type-subtype ( subtype-2-Element-Decidable-Subtype P) ( inv p))
Types of decidable subtypes of any universe level are equivalent
module _ {l1 : Level} (X : UU l1) where equiv-universes-2-Element-Decidable-Subtype : (l l' : Level) → 2-Element-Decidable-Subtype l X ≃ 2-Element-Decidable-Subtype l' X equiv-universes-2-Element-Decidable-Subtype l l' = equiv-subtype-equiv ( equiv-universes-decidable-subtype X l l') ( λ P → pair ( has-two-elements (type-decidable-subtype P)) ( is-prop-type-trunc-Prop)) ( λ P → pair ( has-two-elements (type-decidable-subtype P)) ( is-prop-type-trunc-Prop)) ( λ S → pair ( λ h → map-trunc-Prop ( λ h' → equiv-Σ ( λ x → type-Decidable-Prop ( map-equiv ( equiv-universes-decidable-subtype X l l') ( S) ( x))) ( id-equiv) ( λ x → equiv-iff' ( prop-Decidable-Prop (S x)) ( prop-Decidable-Prop ( map-equiv ( equiv-universes-decidable-subtype X l l') ( S) ( x))) ( iff-universes-decidable-subtype X l l' S x)) ∘e ( h')) ( h)) ( λ h → map-trunc-Prop ( λ h' → equiv-Σ ( λ x → type-Decidable-Prop (S x)) ( id-equiv) ( λ x → inv-equiv ( equiv-iff' ( prop-Decidable-Prop (S x)) ( prop-Decidable-Prop ( map-equiv ( equiv-universes-decidable-subtype X l l') ( S) ( x))) ( iff-universes-decidable-subtype X l l' S x))) ∘e ( h')) ( h)))
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2024-01-12. Fredrik Bakke. Make type arguments implicit for
eq-equiv
(#998). - 2023-10-09. Fredrik Bakke and Egbert Rijke. Negated equality (#822).