Cauchy approximations in metric spaces
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.cauchy-approximations-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.cauchy-approximations-premetric-spaces open import metric-spaces.limits-of-cauchy-approximations-in-premetric-spaces open import metric-spaces.metric-spaces
Idea
A Cauchy approximation¶ in a metric space is a Cauchy approximation in the carrier premetric space.
Definitions
Cauchy approximations in metric spaces
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where is-cauchy-approximation-prop-Metric-Space : (ℚ⁺ → type-Metric-Space A) → Prop l2 is-cauchy-approximation-prop-Metric-Space = is-cauchy-approximation-prop-Premetric-Space ( premetric-Metric-Space A) is-cauchy-approximation-Metric-Space : (ℚ⁺ → type-Metric-Space A) → UU l2 is-cauchy-approximation-Metric-Space = type-Prop ∘ is-cauchy-approximation-prop-Metric-Space cauchy-approximation-Metric-Space : UU (l1 ⊔ l2) cauchy-approximation-Metric-Space = type-subtype is-cauchy-approximation-prop-Metric-Space
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) (f : cauchy-approximation-Metric-Space A) where map-cauchy-approximation-Metric-Space : ℚ⁺ → type-Metric-Space A map-cauchy-approximation-Metric-Space = pr1 f is-cauchy-approximation-map-cauchy-approximation-Metric-Space : (ε δ : ℚ⁺) → neighborhood-Metric-Space ( A) ( ε +ℚ⁺ δ) ( map-cauchy-approximation-Metric-Space ε) ( map-cauchy-approximation-Metric-Space δ) is-cauchy-approximation-map-cauchy-approximation-Metric-Space = pr2 f
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).