Mere decidable embeddings
Content created by Fredrik Bakke.
Created on 2026-01-10.
Last modified on 2026-01-10.
module foundation.mere-decidable-embeddings where
Imports
open import foundation.cantor-schroder-bernstein-decidable-embeddings open import foundation.decidable-embeddings open import foundation.functoriality-propositional-truncation open import foundation.mere-equivalences open import foundation.propositional-truncations open import foundation.universe-levels open import foundation.weak-limited-principle-of-omniscience open import foundation-core.propositions open import order-theory.large-preorders
Idea
A type A merely decidably embeds¶ into a
type B if there merely exists a
decidable embedding of A into B.
Definition
mere-decidable-emb-Prop : {l1 l2 : Level} → UU l1 → UU l2 → Prop (l1 ⊔ l2) mere-decidable-emb-Prop X Y = trunc-Prop (X ↪ᵈ Y) mere-decidable-emb : {l1 l2 : Level} → UU l1 → UU l2 → UU (l1 ⊔ l2) mere-decidable-emb X Y = type-Prop (mere-decidable-emb-Prop X Y) is-prop-mere-decidable-emb : {l1 l2 : Level} (X : UU l1) (Y : UU l2) → is-prop (mere-decidable-emb X Y) is-prop-mere-decidable-emb X Y = is-prop-type-Prop (mere-decidable-emb-Prop X Y)
Properties
Types equipped with mere decidable embeddings form a preordering
refl-mere-decidable-emb : {l1 : Level} (X : UU l1) → mere-decidable-emb X X refl-mere-decidable-emb X = unit-trunc-Prop id-decidable-emb transitive-mere-decidable-emb : {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} {Z : UU l3} → mere-decidable-emb Y Z → mere-decidable-emb X Y → mere-decidable-emb X Z transitive-mere-decidable-emb = map-binary-trunc-Prop comp-decidable-emb mere-decidable-emb-Large-Preorder : Large-Preorder lsuc (_⊔_) mere-decidable-emb-Large-Preorder = λ where .type-Large-Preorder l → UU l .leq-prop-Large-Preorder → mere-decidable-emb-Prop .refl-leq-Large-Preorder → refl-mere-decidable-emb .transitive-leq-Large-Preorder X Y Z → transitive-mere-decidable-emb
Assuming WLPO, then types equipped with mere decidable embeddings form a partial ordering
antisymmetric-mere-decidable-emb : {l1 l2 : Level} {X : UU l1} {Y : UU l2} → level-WLPO (l1 ⊔ l2) → mere-decidable-emb X Y → mere-decidable-emb Y X → mere-equiv X Y antisymmetric-mere-decidable-emb wlpo = map-binary-trunc-Prop (Cantor-Schröder-Bernstein-WLPO wlpo)
Recent changes
- 2026-01-10. Fredrik Bakke. Complemented inequality of cardinalities (#1591).