The universal reflexive globular type

Content created by Egbert Rijke.

Created on 2024-12-03.
Last modified on 2024-12-03.

{-# OPTIONS --guardedness #-}

module globular-types.universal-reflexive-globular-type where
Imports
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import globular-types.reflexive-globular-types

Idea

The universal reflexive globular type 𝒢 l at universe level is a translation from category theory into type theory of the Hofmann–Streicher universe [Awodey22] of presheaves on the reflexive globular category Γʳ

      s₀       s₁       s₂
    ----->   ----->   ----->
  0 <-r₀-- 1 <-r₁-- 2 <-r₂-- ⋯,
    ----->   ----->   ----->
      t₀       t₁       t₂

in which the reflexive globular identities

  rs = id
  rt = id
  ss = ts
  tt = st

hold.

The Hofmann–Streicher universe of presheaves on a category 𝒞 is the presheaf obtained by applying the functoriality of the right adjoint ν : Cat → Psh 𝒞 of the category of elements functor ∫_𝒞 : Psh 𝒞 → Cat to the universal discrete fibration π : Pointed-Type → Type. More specifically, the Hofmann–Streicher universe (𝒰_𝒞 , El_𝒞) is given by

     𝒰_𝒞 I := Presheaf 𝒞/I
  El_𝒞 I A := A *,

where * is the terminal object of 𝒞/I, i.e., the identity morphism on I.

We compute a few instances of the slice category Γʳ/I:

  • The category Γʳ/0 is the category

          s₀        s₁          s₂
        ----->    ----->      ----->
      1 <-r₀-- r₀ <-r₁-- r₀r₁ <-r₂-- ⋯.
        ----->    ----->      ----->
          t₀        t₁          t₂
    

    In other words, we have an isomorphism of categories Γʳ/0 ≅ Γʳ.

  • The category Γʳ/1 is the category

                                          ⋮
                                         r₁r₂
                                         ∧|∧
                                         |||
                                         |∨|
                                          r₁
                                         ∧|∧
               s₁          s₀            |||            s₀          s₁
             <-----      <-----      s₀  |∨|  t₀      ----->      ----->
    ⋯ s₀r₀r₁ --r₁-> s₀r₀ --r₀-> s₀ -----> 1 <----- t₀ <-r₀-- t₀r₀ <-r₁-- t₀r₀r₁ ⋯.
             <-----      <-----                       ----->      ----->
               t₁          t₀                           t₀          t₁
    

Definitions

module _
  (l1 l2 : Level)
  where

  0-cell-universal-Reflexive-Globular-Type : UU (lsuc l1  lsuc l2)
  0-cell-universal-Reflexive-Globular-Type =
    Reflexive-Globular-Type l1 l2

See also

References

[Awodey22]
Steve Awodey. On Hofmann-Streicher universes. May 2022. arXiv:2205.10917.

Recent changes