The universal reflexive globular type
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.universal-reflexive-globular-type where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import globular-types.reflexive-globular-types
Idea
The universal reflexive globular type¶ 𝒢 l
at
universe level is a translation from category
theory into type theory of the Hofmann–Streicher universe [Awodey22] of
presheaves on the reflexive globular category Γʳ
s₀ s₁ s₂
-----> -----> ----->
0 <-r₀-- 1 <-r₁-- 2 <-r₂-- ⋯,
-----> -----> ----->
t₀ t₁ t₂
in which the reflexive globular identities
rs = id
rt = id
ss = ts
tt = st
hold.
The Hofmann–Streicher universe of presheaves on a category 𝒞
is the presheaf
obtained by applying the functoriality of the right adjoint ν : Cat → Psh 𝒞
of
the category of elements functor ∫_𝒞 : Psh 𝒞 → Cat
to the universal discrete
fibration π : Pointed-Type → Type
. More specifically, the Hofmann–Streicher
universe (𝒰_𝒞 , El_𝒞)
is given by
𝒰_𝒞 I := Presheaf 𝒞/I
El_𝒞 I A := A *,
where *
is the terminal object of 𝒞/I
, i.e., the identity morphism on I
.
We compute a few instances of the slice category Γʳ/I
:
-
The category Γʳ/0 is the category
s₀ s₁ s₂ -----> -----> -----> 1 <-r₀-- r₀ <-r₁-- r₀r₁ <-r₂-- ⋯. -----> -----> -----> t₀ t₁ t₂
In other words, we have an isomorphism of categories
Γʳ/0 ≅ Γʳ
. -
The category Γʳ/1 is the category
⋮ r₁r₂ ∧|∧ ||| |∨| r₁ ∧|∧ s₁ s₀ ||| s₀ s₁ <----- <----- s₀ |∨| t₀ -----> -----> ⋯ s₀r₀r₁ --r₁-> s₀r₀ --r₀-> s₀ -----> 1 <----- t₀ <-r₀-- t₀r₀ <-r₁-- t₀r₀r₁ ⋯. <----- <----- -----> -----> t₁ t₀ t₀ t₁
Definitions
module _ (l1 l2 : Level) where 0-cell-universal-Reflexive-Globular-Type : UU (lsuc l1 ⊔ lsuc l2) 0-cell-universal-Reflexive-Globular-Type = Reflexive-Globular-Type l1 l2
See also
External links
- Globular sets at the Lab.
References
- [Awodey22]
- Steve Awodey. On Hofmann-Streicher universes. May 2022. arXiv:2205.10917.
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).