The precategory of metric spaces and maps
Content created by Fredrik Bakke and Louis Wasserman.
Created on 2026-01-01.
Last modified on 2026-01-01.
module metric-spaces.precategory-of-metric-spaces-and-maps where
Imports
open import category-theory.precategories open import foundation.function-types open import foundation.identity-types open import foundation.universe-levels open import metric-spaces.maps-metric-spaces open import metric-spaces.metric-spaces
Idea
Since the carrier type of any metric space is a set, they are the objects of a precategory where morphisms are maps between them.
Definition
module _ {l1 l2 : Level} where precategory-map-Metric-Space : Precategory (lsuc l1 ⊔ lsuc l2) l1 precategory-map-Metric-Space = make-Precategory ( Metric-Space l1 l2) ( map-set-Metric-Space) ( λ {A B C} g f → g ∘ f) ( λ A → id) ( λ {A B C D} h g f → refl) ( λ {A B} f → refl) ( λ {A B} f → refl)
Recent changes
- 2026-01-01. Louis Wasserman and Fredrik Bakke. Use map terminology consistently in metric spaces (#1778).