Increasing sequences in partially ordered sets
Content created by malarbol.
Created on 2025-04-22.
Last modified on 2025-04-22.
module order-theory.increasing-sequences-posets where
Imports
open import elementary-number-theory.decidable-total-order-natural-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.sequences open import foundation.universe-levels open import order-theory.order-preserving-maps-posets open import order-theory.posets open import order-theory.sequences-posets open import order-theory.subposets
Idea
A sequence in a partially ordered set u
is
increasing¶
if it preserves the
standard ordering on the natural numbers
or, equivalently, if uₙ ≤ uₙ₊₁
for all n : ℕ
.
Definitions
The predicate of being an increasing sequence in a partially ordered set
module _ {l1 l2 : Level} (P : Poset l1 l2) (u : type-sequence-Poset P) where is-increasing-prop-sequence-Poset : Prop l2 is-increasing-prop-sequence-Poset = preserves-order-prop-Poset ℕ-Poset P u is-increasing-sequence-Poset : UU l2 is-increasing-sequence-Poset = type-Prop is-increasing-prop-sequence-Poset
The poset of increasing sequences in a poset
module _ {l1 l2 : Level} (P : Poset l1 l2) where increasing-sequence-Poset : Poset (l1 ⊔ l2) l2 increasing-sequence-Poset = poset-Subposet ( sequence-Poset P) ( is-increasing-prop-sequence-Poset P) type-increasing-sequence-Poset : UU (l1 ⊔ l2) type-increasing-sequence-Poset = type-Poset increasing-sequence-Poset seq-increasing-sequence-Poset : type-increasing-sequence-Poset → type-sequence-Poset P seq-increasing-sequence-Poset = pr1 is-increasing-seq-increasing-sequence-Poset : (u : type-increasing-sequence-Poset) → is-increasing-sequence-Poset ( P) ( seq-increasing-sequence-Poset u) is-increasing-seq-increasing-sequence-Poset = pr2
Properties
A sequence u
in a poset is increasing if and only if uₙ ≤ uₙ₊₁
for all n : ℕ
module _ {l1 l2 : Level} (P : Poset l1 l2) (u : type-sequence-Poset P) where is-increasing-leq-succ-sequence-Poset : ((n : ℕ) → leq-Poset P (u n) (u (succ-ℕ n))) → is-increasing-sequence-Poset P u is-increasing-leq-succ-sequence-Poset = preserves-order-ind-ℕ-Poset P u leq-succ-is-increasing-sequence-Poset : is-increasing-sequence-Poset P u → ((n : ℕ) → leq-Poset P (u n) (u (succ-ℕ n))) leq-succ-is-increasing-sequence-Poset H n = H n (succ-ℕ n) (succ-leq-ℕ n)
Recent changes
- 2025-04-22. malarbol. Monotonic sequences in posets (#1388).