Increasing sequences in partially ordered sets

Content created by Louis Wasserman, malarbol and Fredrik Bakke.

Created on 2025-04-22.
Last modified on 2025-11-16.

module order-theory.increasing-sequences-posets where
Imports
open import elementary-number-theory.decidable-total-order-natural-numbers
open import elementary-number-theory.inequality-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.unit-type
open import foundation.universe-levels

open import lists.sequences

open import order-theory.order-preserving-maps-posets
open import order-theory.order-preserving-maps-preorders
open import order-theory.posets
open import order-theory.preorders
open import order-theory.sequences-posets
open import order-theory.subposets

Idea

A sequence in a partially ordered set u is increasing if it preserves the standard ordering on the natural numbers or, equivalently, if uₙ ≤ uₙ₊₁ for all n : ℕ.

Definitions

The predicate of being an increasing sequence in a partially ordered set

module _
  {l1 l2 : Level} (P : Poset l1 l2) (u : sequence-type-Poset P)
  where

  is-increasing-prop-sequence-Poset : Prop l2
  is-increasing-prop-sequence-Poset =
    preserves-order-prop-Poset ℕ-Poset P u

  is-increasing-sequence-Poset : UU l2
  is-increasing-sequence-Poset =
    type-Prop is-increasing-prop-sequence-Poset

The poset of increasing sequences in a poset

module _
  {l1 l2 : Level} (P : Poset l1 l2)
  where

  poset-increasing-sequence-Poset : Poset (l1  l2) l2
  poset-increasing-sequence-Poset =
    poset-Subposet
      ( sequence-Poset P)
      ( is-increasing-prop-sequence-Poset P)

  increasing-sequence-Poset : UU (l1  l2)
  increasing-sequence-Poset =
    type-Poset poset-increasing-sequence-Poset

  seq-increasing-sequence-Poset :
    increasing-sequence-Poset 
    sequence-type-Poset P
  seq-increasing-sequence-Poset = pr1

  is-increasing-seq-increasing-sequence-Poset :
    (u : increasing-sequence-Poset) 
    is-increasing-sequence-Poset
      ( P)
      ( seq-increasing-sequence-Poset u)
  is-increasing-seq-increasing-sequence-Poset = pr2

Properties

Sequences that are increasing by induction

module _
  {l1 l2 : Level} (P : Preorder l1 l2)
  where

  preserves-order-ind-ℕ-Preorder :
    (f :   type-Preorder P) 
    ((n : )  leq-Preorder P (f n) (f (succ-ℕ n))) 
    preserves-order-Preorder ℕ-Preorder P f
  preserves-order-ind-ℕ-Preorder f H zero-ℕ zero-ℕ p =
    refl-leq-Preorder P (f zero-ℕ)
  preserves-order-ind-ℕ-Preorder f H zero-ℕ (succ-ℕ m) p =
    transitive-leq-Preorder P (f 0) (f m) (f (succ-ℕ m))
      ( H m)
      ( preserves-order-ind-ℕ-Preorder f H zero-ℕ m star)
  preserves-order-ind-ℕ-Preorder f H (succ-ℕ n) zero-ℕ ()
  preserves-order-ind-ℕ-Preorder f H (succ-ℕ n) (succ-ℕ m) =
    preserves-order-ind-ℕ-Preorder (f  succ-ℕ) (H  succ-ℕ) n m

  hom-ind-ℕ-Preorder :
    (f :   type-Preorder P) 
    ((n : )  leq-Preorder P (f n) (f (succ-ℕ n))) 
    hom-Preorder (ℕ-Preorder) P
  hom-ind-ℕ-Preorder f H = f , preserves-order-ind-ℕ-Preorder f H

module _
  {l1 l2 : Level} (P : Poset l1 l2)
  where

  preserves-order-ind-ℕ-Poset :
    (f :   type-Poset P) 
    ((n : )  leq-Poset P (f n) (f (succ-ℕ n))) 
    preserves-order-Poset ℕ-Poset P f
  preserves-order-ind-ℕ-Poset =
    preserves-order-ind-ℕ-Preorder (preorder-Poset P)

  hom-ind-ℕ-Poset :
    (f :   type-Poset P) 
    ((n : )  leq-Poset P (f n) (f (succ-ℕ n))) 
    hom-Poset (ℕ-Poset) P
  hom-ind-ℕ-Poset = hom-ind-ℕ-Preorder (preorder-Poset P)

A sequence u in a poset is increasing if and only if uₙ ≤ uₙ₊₁ for all n : ℕ

module _
  {l1 l2 : Level} (P : Poset l1 l2) (u : sequence-type-Poset P)
  where

  is-increasing-leq-succ-sequence-Poset :
    ((n : )  leq-Poset P (u n) (u (succ-ℕ n))) 
    is-increasing-sequence-Poset P u
  is-increasing-leq-succ-sequence-Poset =
    preserves-order-ind-ℕ-Poset P u

  leq-succ-is-increasing-sequence-Poset :
    is-increasing-sequence-Poset P u 
    ((n : )  leq-Poset P (u n) (u (succ-ℕ n)))
  leq-succ-is-increasing-sequence-Poset H n =
    H n (succ-ℕ n) (succ-leq-ℕ n)

Recent changes